Power Iteration Clustering

Talk Outline

- Clustering
- Spectral Clustering
- Power Iteration Clustering (PIC)
 - PIC with Path Folding
 - PIC Extensions

Clustering

- Automatic grouping of data points
- 3 example datasets:

k-means

- A well-known clustering method
 - Given: Points in Euclidean space and an integer k
 - Find: k clusters determined by k centroids
 - Objective: Minimize within-cluster sum of square distances

Graph Clustering

Given: Data = Network = Graph = Matrix

	Α	В	С	D	Ε	F	G	Н	1	J
Α		1		1		1				
В	1		1							
С		1								
D	1					1				
E						1				
F	1			1	1					
G									1	
н									1	1
1							1	1		1
J								1	1	

Graph Cluster $ncut(A,B) = \frac{w(A,B)}{w(A,V)} + \frac{w(A,B)}{w(B,V)}$

Example - Normalized Cut:

$$ncut(A,B) = \frac{w(A,B)}{w(A,V)} + \frac{w(A,B)}{w(B,V)}$$

Find: Partitions of the graph

Objective: Minimizes (or maximizes) an objective function according to a certain definition of a "balanced cut"

Talk Outline

Clustering

- Spectral Clustering
- Power Iteration Clustering (PIC)
 - PIC with Path Folding
 - PIC Extensions

Relax solution
to take on real values,
then compute via
eigencomputation

- Does two things:
 - Provides good polynomial-time approximation to the balanced graph cut problem
 - Clustering according to similarity, not Euclidean space

Recall that similarity can be represented as a graph/matrix

 How: Cluster data points in the space spanned by the "significant" eigenvectors (spectrum) of a [Laplacian] similarity matrix

A popular spectral clustering method: normalized cuts (NCut)

Results with Normalized Cuts:

Spectr

Can we find a similar lowdimensional embedding for clustering without eigenvectors?

Finding eigenvectors and eigenvalues of a matrix is still pretty slow in general

lgorithm (Shi & Malik 2000): milarity function s

- matrix a. D is a diagonal square matrix $D_{ii} = \sum_{j} A_{ij}$
- 3. Find eigenvectors and corresponding eigenvalues of W
- 4. Pick the k eigenvectors of W with the 2^{nd} to k^{th} smallest corresponding eigenvalues as "significant" eigenvectors
- 5. Project the data points onto the space spanned by these vectors
- 6. Run k-means on the projected data points

Talk Outline

- Clustering
- Spectral Clustering

- Power Iteration Clustering (PIC)
 - PIC with Path Folding
 - PIC Extensions

Power Iteration Clustering

- Spectral clustering methods are nice, and a natural choice for graph data
- But they are rather expensive and slow

Power iteration clustering (PIC) can provide a similar solution at a very low cost (fast)!

The Power Iteration

 Or the power method, is a simple iterative method for finding the dominant eigenvector of a matrix:

 v^t : the **Typically** vector at converges quickly; $\mathbf{v}^{t+1} = cW\mathbf{v}^t$ iteration *t*; fairly efficient if W is a sparse matrix v^0 typically a c: a normalizing random *W* : a constant to keep v^t vector square from getting too large matrix or too small

The Power Iteration

• Or the power method, is a simple iterative method for finding the dominant eigenvector of a matrix:

The Power Iteration

Power Iteration Clustering

- The 2nd to kth eigenvectors of W=D⁻¹A are roughly piece-wise constant with respect to the underlying clusters, each separating a cluster from the rest of the data
- The linear combination of piece-wise constant vectors is also piece-wise constant!

Power Iteration Clustering

Details

When to Stop

Recall:

$$\mathbf{v}^t = c_1 \lambda_1^t \mathbf{e}_1 -$$

At the beginning, v changes fast ("accelerating") to converge locally due to "noise terms" (k +1...n) with small λ

$$\mathbf{e}_{k+1} + \dots + c_n \lambda_n^t \mathbf{e}_n$$

Then:

$$\frac{\mathbf{v}^{t}}{c_{1}\lambda_{1}^{t}} = \mathbf{e}_{1} + \dots + \frac{c_{k}}{c_{1}} \left(\frac{\lambda_{k}}{\lambda_{1}}\right)^{t} \mathbf{e}_{k} + \frac{c_{k+1}}{c_{1}} \left(\frac{\lambda_{k+1}}{\lambda_{1}}\right)^{t} \mathbf{e}_{k+1} + \dots + \frac{c_{n}}{c_{1}} \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{t} \mathbf{e}_{n}$$

When "noise terms" have gone to zero, v changes slowly ("constant speed") because only larger λ terms (2...k) are left, where the eigenvalue ratios are close to 1

Because they are raised to the power *t*, the eigenvalue ratios determines how fast *v* converges to *e*₁

Power Iteration Clustering

A basic power iteration clustering (PIC) algorithm:

Input: A row-normalized affinity matrix W and the number of clusters k **Output:** Clusters C_1 , C_2 , ..., C_k

- 1. Pick an initial vector v⁰
- 2. Repeat
 - Set $\mathbf{v}^{t+1} \leftarrow W \mathbf{v}^t$
 - Set $\delta^{t+1} \leftarrow |\mathbf{v}^{t+1} \mathbf{v}^t|$
 - Increment t
 - Stop when $|\delta^t \delta^{t-1}| \approx 0$

3. Use k-means to cluster points on \mathbf{v}^{t} and return clusters C_1 , C_2 , ..., C_k

i.e., when acceleration is nearly zero

PIC Runtime

Normalized Cut

Normalized Cut, faster implementation

Table 4. Runtime Charison (in millise S) of PIC and spectral clustering algorithms on synthetic datasets.

Nodes	\mathbf{Edges}	NCutE	\mathbf{NCutI}	PIC
1k	10k	1,885	177	1
5k	250k	154,797	6,939	7
10k	1,000k	1,111,441	42,045	34
50k	$1,000 \mathrm{k} \\ 25,000 \mathrm{k}$	-	-	849
100k	100,000k	-	-	2,960

Ran out of memory (24GB)

PIC Accuracy on Network Datasets

Talk Outline

- Clustering
- Spectral Clustering
- Power Iteration Clustering (PIC)

- PIC with Path Folding
- PIC Extensions

Clustering Text Data

Spectral clustering methods are nice

We want to use them for clustering text data

(A lot of)

The Problem with Text Data

 Documents are often represented as feature vectors of words:

The importance of a Web page is an inherently subjective matter, which depends on the readers...

In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use...

You're not cool just because you have a lot of followers on twitter, get over yourself...

cool	web	search	make	over	you	
0	4	8	2	5	3	
0	8	7	4	3	2	
1	0	0	0	1	22.	

The Problem with Text Data

- Feature vectors are often sparse
- But similarity matrix is not!

Mostly non-zero
- any two
documents are
likely to have a
word in common

Mostly zeros - any document contains only a small fraction of the vocabulary

27	125	-	
23	-	125	
-	23	27	

cool	web	search	make	over	you	
0	4	8	2	5	3	
0	8	7	4	3	2	
1	0	0	0	1	22.	

The Problem with Text

In general O(n³); approximation methods still not very fast

 A similarity matrix is the input to many methods, including spectral clustering

Spectral clustering requires the computation of

the eigenvectors of a similarity matrix

expensive!
Does not scale up to big datasets!
operate on

Too

 27
 125

 23
 125

 23
 27

O(n²) time to construct

O(n²) space to store

> O(n²) time to operate on

The Problem with Text Data

- We want to use the similarity matrix for clustering (like spectral clustering), but:
 - Without calculating eigenvectors
 - Without constructing or storing the similarity
 matri

Power Iteration Clustering

+ Path Folding

A ba

Okay, we have a fast clustering method – but there's the W that requires $O(n^2)$ storage space and construction and operation time!

orithm:

usters k

- Input: Outpu
- 1. Pick an initial
- 2. Repeat
 - Set $\mathbf{v}^{t+1} \leftarrow W \mathbf{v}^t -$
 - Set $\delta^{t+1} \leftarrow | \cdot \cdot^{t+1} \mathbf{v}^t |$
 - Increment
 - Stop when
- 3. Use *k*-m

Key operation in PIC

usters C₁, C₂, ..., C_k

Note: matrix-vector multiplication!

≈ 0

- What's so good about matrix-vector multiplication?
- If we can decompose the matrix...

 $\mathbf{v}^{t+1} = W\mathbf{v}^t = (ABC)\mathbf{v}^t$

 Then we arrive at the same solution doing a series of matrix-vector multiplications!

$$\mathbf{v}^{t+1} = (A(B(C\mathbf{v}^t)))$$

How could this be better?

 As long as we can decompose the matrix into a series of sparse matrices, we can turn a dense matrix-vector multiplication into a series of sparse matrix-vector multiplications.

This means that we can turn an operation that requires O(n²) storage and runtime into one that requires ~O(n) storage and runtime!

This is exactly the case for text data

And many other kinds of data as well!

Example – inner product similarity:

$$W = D^{-1}FF^{T}$$

Diagonal matrix that normalizes *W* so rows sum to 1

Storage: ~n

The original feature matrix

The feature matrix transposed

Construction: given

Storage: ~O(n)

Construction: given

Storage: just use F

Okay...how about a similarity function we actually use for text data?

Example – inner product similarity:

Construction: ~O(n)

Storage: ~O(n)

Operation: ~O(n)

Iteration up ate:

$$\mathbf{v}^{t+1} = D^{-1}(F(F^T\mathbf{v}^t))$$

Path Folding

Example – cosine similarity:

Diagonal cosine normalizing matrix

Construction: ~O(n)

Storage: ~O(n)

Operation: ~O(n)

Iteration up ate

$$\mathbf{v}^{t+1} = D^{-1}(N(F(F^T(N\mathbf{v}^t))))$$

Compact storage: we don't need a cosinenormalized version of the feature vectors

Path Folding

 We refer to this technique as <u>path folding</u> due to its connections to "folding" a bipartite graph into a unipartite graph.

Results

An accuracy result:

Diagonal: tied (most datasets)

Talk Outline

- Clustering
- Spectral Clustering
- Power Iteration Clustering (PIC)
 - PIC with Path Folding

PIC Extensions

- One robustness question for vanilla PIC as data size and complexity grows:
- How many (noisy) clusters can you fit in one dimension without them "colliding"?

A solution:

Run PIC *d* times with different random starts and construct a *d*-dimension embedding

- Unlikely two clusters collide on all d dimensions
- We can afford it because PIC is fast and spaceefficient!

Preliminary results on network classification datasets:

Preliminary results on name disambiguation datasets:

2-dimensional embedding of Football dataset:

PIC Extension: Hierarchical Clustering

- Real, large-scale data may not have a "flat" clustering structure
- A hierarchical view may be more useful

Good News:

The dynamics of a PIC embedding display a hierarchically convergent behavior!

PIC Extension: Hierarchical Clustering

- Why?
- Recall PIC embedding at time t:

PIC Extension: Hierarchical Clustering

Questions & Discussion

• For further information, questions, and discussion:

– http://www.cs.cmu.edu/~frank

– frank@cs.cmu.edu

- GHC 5507

Additional Information

PIC: Related Clustering Work

- Spectral Clustering
 - (Roxborough & Sen 1997, Shi & Malik 2000, Meila & Shi 2001, Ng et al. 2002)
- Kernel *k*-Means (Dhillon et al. 2007)
- Modularity Clustering (Newman 2006)
- Matrix Powering
 - Markovian relaxation & the information bottleneck method (Tishby & Slonim 2000)
 - matrix powering (Zhou & Woodruff 2004)
 - diffusion maps (Lafon & Lee 2006)
 - Gaussian blurring mean-shift (Carreira-Perpinan 2006)
- Mean-Shift Clustering
 - mean-shift (Fukunaga & Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002)
 - Gaussian blurring mean-shift (Carreira-Perpinan 2006)

PIC: Some "Powering" Methods at a Glance

Method	W	Iterate	Stopping	Final
Tishby & Slonim 2000	W=D ⁻¹ A	W ^{t+1} =W ^t	rate of information loss	information bottleneck method
Zhou & Woodruff 2004	W=A	W ^{t+1} =W ^t	a small t	a threshold ε
Carreira- Perpinan 2006	W=D ⁻¹ A	X ^{t+1} =WX	entropy	a threshold ε
PIC	W=D ⁻¹ A	v ^{t+1} =Wv ^t	acceleration	k-means

How far can we go with a one- or low-dimensional embedding?

PIC: Versus Popular Fast Sparse Eigencomputation Methods

For Symmetric For General Improvement Matrices Matrices Basic; numerically Successive Power unstable, can be Method slow More stable, but Lanczos Method Arnoldi Method may require lots of time and memory **Implicitly Restarted** Implicitly Restarted More time- and Lanczos Method Arnoldi Method memory-efficient (IRLM) (IRAM)

Randomized sampling methods are also popular

n = # nodes e = # edges k = # eigenvectors m (>k) = Arnoldi Length

Method	Time	Space
IRAM	$(O(m^3)+(O(nm)+O(e))\times O(m-k))\times (\# restart)$	O(e)+O(nm)
PIC	O(e)x(# iterations)	O(e)

y: algorithm runtime (log scale)

Two methods have almost the same behavior

- PIC is O(n) per iteration and the runtime curve looks linear...
- But I don't like eyeballing curves, and perhaps the number of iteration increases with size or difficulty of the dataset?

- Linear run-time implies *constant* number of iterations.
- Number of iterations to "accelerationconvergence" is hard to analyze:
 - Faster than a single complete run of power iteration to convergence.
 - On our datasets
 - 10-20 iterations is typical
 - 30-35 is exceptional

PICwPF: Related Wo

Not O(n) time methods

- Faster spectral clustering
 - Approximate eigendecomposition (Lanczos, IRAM)
 - Sampled eigendecomposition (Nyström)
- Sparser matrix
 - Sparse construction
 - k-nearest-neighbor graph
 - k-matching
 - graph sampling / reduction

Still require O(n²) construction in general

Not O(n) space methods

	ACC-Avg	NMI-Avg
baseline	57.59	-
k-means	69.43	0.2629
NCUTevd	77.55	0.3962
NCUTiram	61.63	0.0943
PIC	76.67	0.3818