
Information Extraction:
foundations and rule-based approaches

Brendan O’Connor
Structured Prediction, 11/17/2011

1Saturday, November 26, 2011

Outline

• Problem

• Theoretical foundations: frames and scripts

• The template-filling paradigm

• Early methods

• Rule-based

• Rule-based and empirically driven:

SRI FASTUS case study

2Saturday, November 26, 2011

(e.g. CFG) -- Higher on Chomsky Hierarchy

(e.g. FST) -- Lower on Chomsky Hierarchy

Han
d-

bu
ilt

Le
ar

ne
d

FASTUS system HMMs,
Chain CRFs

PCFGs,
Tree CRFs

(It’s all Structured Prediction)

3Saturday, November 26, 2011

we can break down structured prediction methods into two dimensions.
first is how high up the chomsky hierarchy you go -- the level of complexity and recurisiveness of your
structures. the second is whether you design the models by hand, or learn them from data.

so far in this course, everything weʼve done is on the learned side. at the finite-state level there are
things like HMMs or chain CRFs with bounded memory (markovian windows). at the CFG level thereʼs
PCFGs and tree CRFs. and there can be more stuff too, like skip-chain CRFs and various increasingly
intractable MRFs and stuff.

what we havenʼt talked about, at all, are models built by hand. these are not as popular any more. the
case study for today, the FASTUS system, is in the lower-left quadrant. but there are interesting
comparisons both up and to the right quadrants.

Natural Language
Understanding

• For question-answering, dialogue systems, story
understanding, etc… one subproblem: want a
relational meaning representation

• (Why relational?)

• Predicate-Argument structures

• e.g. V(S, O): verb has noun arguments

• (~Verb) Actions/Events/Frames, having

• (~Noun) Roles/Slots/Arguments

4Saturday, November 26, 2011

why relational -- you could communicate about the world with single symbols of individual propositions, but thatʼs wasteful, you
cross-product out the space too much. Language is compositional and combinatorial, suggesting we use some sort of
relational structures to communicate, and this might be a requirement for a meaning representation.

the way to do this is with Predicate-Argument structures.
in syntax, the most basic of all is a subject-verb-object. the verb is a predicate, and it has two noun arguments, a subject and
an object. now this isnʼt the whole story of course, thereʼs many other arguments and such in language -- adjectives can
modify nouns, nouns can modify nouns, etc. but SVO is most basic.

when you start talking about semantics, you generalize the Predicate-Argument pairs beyond verbs and nouns. for example,
for the predicate, you might have actions, events, or frames, and one of those has a number of roles, slots, or arguments.
(following our example, verbs often denote actions and events, though other linguistic things can too.) there are many different
types of Predicate-Argument structures, potentially.

Example

Text I saw a person

SVO syntactic
structures

see(I, person)
[verb=see, subj=I, directobj=person]

Semantic roles [event=see, agent=I, patient=person]

(Caveat, IANALinguist!)
5Saturday, November 26, 2011

here are some simple examples.

semantic roles -- for this simple example all weʼve done is rename the arguments, but these are
supposed to generalize beyond syntax and encode certain types of recurring roles across verbs. some
people argue there is a core set of several or maybe a dozen semantic roles. the agent has volition
and is causing actions to happen, the patient is a target of the action, an instrument is the means of
accomplishing the action, etc.

i always get confused, iʼm not a linguist. some people argue that semantic roles donʼt hold across
verbs, that all you do with them is to normalize across different syntactic manifestations. but whatever,
in any case there is potential value in representing semantics with predicate-argument structures.

Example

Text I saw a person

Feature-
structure

(frame-style?)
representation

type= SeeingEvent
time= Past
subj= [word= I,
 grampers=1st,
 num= sg]
...

��

(High-level syntax like LFG / HPSG?)
(Or is it low-level semantics?)

6Saturday, November 26, 2011

once you go into these pred-arg structures, you can start stuffing in all sorts of features for different
grammatical and semantic attributes. ok, this diagram is conflating semantick-y things with high-level
syntactic analysis youʼd see in a unification grammar like lfg or hpsg. but you might have stuff like, the
verb is in the past tense so we know the time the event happened was in the past ... the subject word is
1st-person-singular, etc. lots more predicates and arguments.

Example

Text I believe I saw a person

Frame-style
representation

ctx(TopCtx)
ctx(BeliefCtx)
inctx(TopCtx, event(believe))
inctx(TopCtx, agent(believe, I))
inctx(TopCtx, theme(believe, BeliefCtx))
inctx(BeliefCtx, event(see))
inctx(BeliefCtx, agent(see, I))
inctx(BeliefCtx, patient(see, person))

(Factivity via Davidsonian semantics,
description/modal logic formalism: Bobrow et al 2005)

event= believe
agent= I
theme= BeliefCtx

event= see
agent= I
patient= person

TopCtx => BeliefCtx =>

7Saturday, November 26, 2011

or hereʼs more information, contexted events. now the sentence is more complex. the believing event and the seeing of a
person event, you could call them “facts” or “propositions”, but they arenʼt quite true in the same way. one approach is to use
a “contexted logic”, so you say thereʼs a top context or possible world of the speakerʼs statement, in which the believing event
happened, then within the world of the belief, this seeing event happened, and youʼre allowed to make the imaginary-world-
context the object (“theme” I think??) of the believing.

note you can represent this in a flatter pred-arg structure that looks like a list of logical assertions. assert there are two
differnet contexts, then facts (the little pred-arg tuples comprising the event tuples) are asserted within a given context.

anyways, this has more structure than the previous examples, but the point is thereʼs all sorts of different semantic
phenomena you want various sorts of predicate-argument structures for. now letʼs turn back to the simplest flat pred-arg
structres we had with semantic role events.

Rough sketch: different theoretical traditions?
(leaving out logical semantics, discourse... just flat pred-arg structures)

Case Grammar
Fillmore 1964,

“The Case for Case”

Frames
Schank and Abelson 1977,

“Scripts, Plans, Goals,
Understanding”

Computational Linguistics Artificial Intelligence

FrameNet
VerbNet
PropBank

(OntoNotes)

Semantic Role Labeling

MUC
ACE

(GENIA)

Template-Filling IE

ACL, EMNLP... (MUC), AAAI...

The
or

y

(in
co

mple
te)

Data
se

ts

Str
uc

t.

Pr
ed

.

Ta
sk

Ve
nu

es

Both are predicate-argument
recognition problems;

structurally similar.

More recent work
merges annotation levels:
i.e. OntoNotes, GENIA

8Saturday, November 26, 2011

this is a horribly reductionist diagram, but there is a genuine bit of separation in these literatures. linguistics and AI are
different areas. what weʼve been talking about with the semantic roles and such basically derives from Fillmoreʼs classic
theory of Case Grammar, with lots of other work by others through the years (Jackendoff, Levin, others iʼm forgetting). the
theories are nice, but to make it concrete you need to make datasets that computers can read. in this vein, ones you may
have heard of include framenet, verbnet, propbank, and current work is on ontonotes. Then for any of these, you can analyze
text and label it with its lexicon and labels. this is a structured prediction task, and itʼs called semantic role labeling.

but thereʼs another theoretical tradition too -- frames, or sometimes called scripts. again lots of people working on this but one
of the big names is roger schank; schank and abelson 1977 is the main book on it. iʼll argue that it eventually evolved into
what we now call “template-filling information extraction.”, typified by the MUC competition and datasets. also ACE, and also
the biomed IE corpus GENIA, though i think that one became more broad over the years.

anyways, the SRL and template-filling IE tasks are, as structured prediction problems, extremely similar. when you read the
literature there are funny holes and stuff because people in different research communities tend to publish about different
ones. however recent work has merged these strands more and more; both ontonotes and genia have multilevel annotations
from syntactic to more semantic labels.

Scripts/Frames
Schank and Abelson (1977)

9Saturday, November 26, 2011

the schank and abelson book is kind of crazy and maddeningly vague, but still a bit interesting. i tried to find one picture that
might tell something useful about the theory, so here we go.

PTRANS -- physical transfer, like john moved john to the restaurant
MTRANS
ATRANS
rE -- effect resulting from
E

schank is still around. his website is crazy, take a look. he had lots of students, many of them are still around at various
universities (like ed hovyʼs talk a few weeks ago, he was a schank student), two of his former students are here at cmu. if you
talk to anyone over 50 or 60 who was in AI back in those days, try asking about roger schank, you will get extremely strong
opinions. it is interesting.

Newswire IE: “Sketchy Scripts”

• Gerald DeJong 1982, “FRUMP System”

• The first template-filling IE system?

10Saturday, November 26, 2011

gerald dejong is now at uiuc

everyone cites this paper as the first template-filling IE system. the william cohen and andrew mccallum kdd03 tutorial cites it,
and jurafsky and martin book does so too. so it must be true.

itʼs in this edited volume here filled mostly with schankian stuff. this one is interesting for a reason weʼll get to.

here is an example sketchy script -- it loosely suggests a collection of events that should go together, i guess with a temporal
order maybe.

itʼs almost like a parody of a hollywood producer or something.

if you go make a probabilistic narrative model, run this on Law and Order episodes. make sure you get really low cross
entropy

What it does

Script: “country taking
economic control of an
industry from another”

System output

Input text

11Saturday, November 26, 2011

he wrote the template, that specifies types of arguments -- a “sketchy script”.
the system fills out a template based on input text from a newswire article.

12Saturday, November 26, 2011

i guess you dont have page limits in edited volumes.
he’s annotating the debug output of the system.
the algorithm it’s running is some crazy heuristic search thing.
there’s a semantic module that knows about the script,
and a text analysis module that looks at the text and tries to match it into the slots and they
go back and forth.

13Saturday, November 26, 2011

several pages later you get an answer. boom.

now, the biggest criticism of the schankians they wrote these crazy things with only a few
dozen words of lexical coverage and ran them on like one or two stories or something. very
bad generalization.

but there’s something cool here -- a real-world test! they took the new news that came out
every day and ran it through their system. they’re trying to detect several script templates
here.

you know everyone wants real-time streaming twitter analysis now? this is the same thing.
but with newswire, and lisp.

(unusually statistical for a Schankian, and in 1982!)
14Saturday, November 26, 2011

it’s a confusion matrix! (sum and divide among the columns to get precision and recall.)

ok we can complain, what does “Nearly Correct” mean. but at least they’re doing something
here. and it really was a hidden test set.

• Analyze time-series of friendly vs. hostile
country-country interactions, coded from
newswire text

• Manual coding (~1960’s): hire undergrad annotators
to read thousands of articles

• Machine coding (KEDS) -- based on SVO
extraction

Phil Schrodt (1993, 1994... 2011)
http://eventdata.psu.edu/

Application: event analysis in
international relations

15Saturday, November 26, 2011

no one in computer science knows about this work but it is cool.

the system phil schrodt built is, as far as i could tell from some of the papers about it, mostly
about SVO extraction, often from just the first sentence of a newswire article. but they’re
been running it and working on variants of it, for years now.

Kansas Event Data System -- now he’s at Penn State, so i think the name has changed.

http://eventdata.psu.edu/
http://eventdata.psu.edu/

Application: event analysis in
international relations

16Saturday, November 26, 2011

here are coding standards political scientists made, decades before anyone tried to use IE to
do it. undergrads annotated lots of articles with this. they worried a lot about interannotator
agreement and stuff like that. here’s an example of a time series of events.

Application: event analysis in
international relations

(These graphs are from manual
coding; IE evaluations in Schrodt and
Gerner 1994, King and Lowe 2001)

17Saturday, November 26, 2011

you can see various international events, like cold war to detente, or the first intifada. also
they can use this data to answer substantive questions, like the temporal relationship of arms
sales to friendly vs. hostile interactions between countries. (cross-correlation: ?ccf in R)

• Bakeoff format: shared task, dataset, hidden test set
for competitive evaluation

• Different domains – involving specific events

• (1987) MUC-1: Fleet operations

• (1991-2) MUC-3, 4: Terrorist activities in Latin America

• (1993-7) Corporate Joint Ventures, Microelectronic
production, Negotiation of Labor Disputes, Airplane
crashes, and Rocket/Missile Launches

• ACE (1999-2008) – Automated Content Extraction

Message Understanding
Conferences (MUC)

18Saturday, November 26, 2011

this may have been the first bakeoff format shared task in NLP -- at least if you don’t count
speech and information retrieval, which had these things for a while beforehand.

ACE is kind of a follow-up to MUC. it has more data and annotations

MUC Template-Filling IE
Output: extract an event
record (“terrorist attack”)

with the following attributes:

Input: text

19Saturday, November 26, 2011

here’s the task. note the very domain-specific template. there are several high-level roles or
argument types -- incident, perpetrator, targets. the system has to fill in the template with
fragments of text from the document.

FASTUS System

• Hobbs, Appelt, Bear, Israel, Kameyana, Stickel, Tyson 1997,
“A Cascaded Finite-State Transducer for Extracting
Information from Natural-Language Text.”

• From SRI, for early-90‘s MUC

• Hand-built patterns -- but statistically guided
development

• Great case study: realistic end-to-end system, with clear
architecture, formalisms, and engagement with the data

• Example of how to build a rule-based NLP system -- useful
skill in a pinch

20Saturday, November 26, 2011

Recognizer/Chunker Pipeline

1. Complex Words

2. Basic Phrases

3. Complex Phrases

4. Domain Events

5. Merging Structures

Linguistically general
(~syntax)

�

�
Domain specific

(~semantics)

Text

Structure
[Every stage is a Finite State Transducer]

21Saturday, November 26, 2011

FST’s for recognition
(Xerox FST syntax: think of it as a super-regex)

open-source implementation: http://code.google.com/p/foma/wiki/ExampleScripts

DateParser.script
Copyright (C) 2004 Lauri Karttunen

define Day [{Monday} | {Tuesday} | {Wednesday} | {Thursday} |
 {Friday} | {Saturday} | {Sunday}] ;
define Month29 {February};
define Month30 [{April} | {June} | {September} | {December}];
define Month31 [{January} | {March} | {May} | {July} | {August} |
 {October} | {December}] ;
define Month [Month29 | Month30 | Month31];

Numbers from 1 to 31
define Date [OneToNine | [1 | 2] ZeroToNine | 3 [%0 | 1]] ;
Numbers from 1 to 9999
define Year [OneToNine ZeroToNine^<4];
Day or [Month and Date] with optional Day and Year
define AllDates [Day | (Day {, }) Month { } Date ({, } Year)];

[...]
define ValidDates [AllDates & MaxDays & LeapDates];
define DateParser [ValidDates @-> "<DATE>" ... "</DATE>"];

Add tags
for later

processing

22Saturday, November 26, 2011

Lauri Karttunen is famous for lots of finite-state morphology stuff. i think this is a demo
script he wrote for identifying dates in a text with an FST.

actually nearly all of it is just FSA-like. the key bit for how you use it is the bottom. it spits
out these XML-ish tags around the strings matching ValidDates pattern. this is what FST’s
can do.

(note they do more complicated stuff for morphology)

this is actually an open-source implementation of Xerox’s pattern language for FST’s. it is
fairly new. i believe it compiles to target OpenFST, a lower level algorithmic library for
weighted FST’s; it does all the unions and minimization and other finite state stuff, so
compiles this pattern script into an FST that does date recognition. (OpenFST, in turn is a
clone of the old AT&T finite state libraries.)

http://code.google.com/p/foma/wiki/ExampleScripts
http://code.google.com/p/foma/wiki/ExampleScripts

FSA’s for recognition
(Perl-style regex for emoticons)

NormalEyes = r'[:=]'
Wink = r'[;]'

NoseArea = r'(|o|O|-)' ## rather tight precision, \S might be
reasonable...

HappyMouths = r'[D\)\]]'
SadMouths = r'[\(\[]'
Tongue = r'[pP]'
OtherMouths = r'[doO/\\]' # remove forward slash if http://'s
aren't cleaned

Emoticon = (
 "("+NormalEyes+"|"+Wink+")" +
 NoseArea +
 "("+Tongue+"|"+OtherMouths+"|"+SadMouths+"|"+HappyMouths+")"
)

https://github.com/brendano/tweetmotif/blob/master/emoticons.py
23Saturday, November 26, 2011

heck, you can even use standard perl/unix regexes for recognition. half the battle in
maintainability is just decomposing the rules with nice names. no one does this when you
have the hacky perl mentality, but you totally can. here’s one i wrote for emoticons.

note there are precision/recall tradeoffs with every decision you make when writing rules like
this. for example, forward-slash for emoticon mouth gives horrible false positives if there
are URLs in the text :/

https://github.com/brendano/tweetmotif/blob/master/emoticons.py
https://github.com/brendano/tweetmotif/blob/master/emoticons.py

(skipping ahead, FASTUS stage 4)

Event Patterns
<Company/ies> <Set-up> <Joint-Venture>

with <Company/ies>Bridgestone Sports Co. said
Friday it has set up a joint
venture in Taiwan with a local
concern and a Japanese trading
house to produce golf clubs to
be shipped to Japan.

The joint venture, Bridgestone
Sports Taiwan Co., capital- ized
at 20 million new Taiwan
dollars, will start production in
January 1990 with production of
20,000 iron and “metal wood”
clubs a month.

<Produce> <Product>

24Saturday, November 26, 2011

ok back to FASTUS. skipping ahead, here’s the core of the algorithm.
you have to write lots of these templated patterns for a particular template you want to be
filling. these patterns were made to identify instances of these two different events.
[[BTW -- see “AIML”, AI Markup Language, people use it to make chatbots. it’s basically lots
of patterns kind of like this. ELIZA kind of worked like this.]]
Already you can see, if you were running this directly on sequence of words in the text, you
have problems. all these multiwords and names, and then relative clauses and stuff
separating the words you actually care about. need to do some syntactic analysis first.

(1/5) Complex Words

• Multiword
expressions

• Names

1. Complex Words

2. Basic Phrases

3. Complex Phrases

4. Domain Events

5. Merging Structures

Text

Structure

25Saturday, November 26, 2011

back to the pipeline. this first part is simple. you have to have lists of names, and heuristics
for identifying types of names like “Co.” meaning “company”.

BTW, lots of issues here in modern NLP analysis too

(2/5) Basic Phrases

• Small noun chunks

• Verb chunks

• Function word classes

• Some entity classes

• ... this is dictionary
lookup + contextual
disambiguation.
Compare to CRF/
HMM?

26Saturday, November 26, 2011

this is now called “chunking” -- the sentence is divided into non-overlapping subsequences
of tokens. imagine the rules for each one -- not too hard to get started.

lots of trickiness though. for example, there’s probably a preposition regex including “to”.
but “to be” needs to be a verb, and needs to want to grab the next verb to the right “shipped”.
you can imagine lots of priority orderings and overrides. i good pattern rule language should
let you do these things.

note that, fundamentally, these are the same sources of information as in a HMM or CRF
chunker/tagger. emissions weights are soft versions of lexicons (FST-unions). transition
weights are local contextual information. etc.

(these would be called “noun chunks” now)

Finite-state syntactic parsing!
27Saturday, November 26, 2011

(3/5) Complex Phrases
• Complex noun groups (noun phrases): PP attachments,

appositives, noun conjunction

• Complex verb groups: Conjunctions, auxiliaries, modalities

Collapse
across some
verb
auxiliaries ...

28Saturday, November 26, 2011

“announced it was forming” as a synonym to “form” -- at a deep natural language
understanding level, these are different. but perhaps in this domain, if you’re a business
analyst or something, they’re as good as synonyms.

(3/5) Complex Phrases
• Complex noun groups (noun phrases): PP attachments,

appositives, noun conjunction

• Complex verb groups: Conjunctions, auxiliaries, modalities

The status of the joint venture is “Planned” rather than
“Existing”:

GM will form a joint venture with Toyota.
GM plans to form a joint venture with Toyota.
GM expects to form a joint venture with Toyota.
GM announced plans to form a joint venture with Toyota.

Collapse
across some
verb
auxiliaries ...

but not others

29Saturday, November 26, 2011

but sometimes the modalities really do matter. “planning to” is weak and soft in this domain
compared to “announced”.

Other finite-state technology
in NLP

• Pereira 1990 -- finite-state approximations of
grammars

• Abney 1996 -- finite-state partial parsing via
cascades (still can download his CASS system)

• Morphology -- e.g. Inxight analyzer

• Book: Finite State Devices for Natural Language
Processing, ed. Roche and Schabes, 1997
(containing the Hobbs article)

30Saturday, November 26, 2011

ok, that’s the core of their syntax system.

this is a lot of fairly sophisticated syntactic analysis. if someone told you you need a recursive
CFG-style parser to do this, maybe you don’t always. there’s been lots of work along these
lines.

also, finite-state methods are especially popular in morphology, where they’re a pretty
plausible explanation of lots of the phenomena.

(e.g. CFG) -- Higher on Chomsky Hierarchy

(e.g. FST) -- Lower on Chomsky Hierarchy

Han
d-

bu
ilt

Le
ar

ne
d

FASTUS system,
stuff on last slide

HMMs,
Chain CRFs

PCFGs,
Tree CRFs

(It’s all Structured Prediction)

Hand-built
CFG, etc

31Saturday, November 26, 2011

hmms and chain crfs are pretty popular these days. maybe the finite-state level of the
chomsky hierarchy is good enough, especially if you hack it up for a little bit of depth-
bounded structure...

(4/5): Domain Events
(5/5): Merge Structures

<Company/ies> <Set-up> <Joint-Venture>
with <Company/ies>Bridgestone Sports Co. said

Friday it has set up a joint
venture in Taiwan with a local
concern and a Japanese trading
house to produce golf clubs to
be shipped to Japan.

The joint venture, Bridgestone
Sports Taiwan Co., capital- ized
at 20 million new Taiwan
dollars, will start production in
January 1990 with production of
20,000 iron and “metal wood”
clubs a month.

<Produce> <Product>

32Saturday, November 26, 2011

“Pseudo-Syntax”

33Saturday, November 26, 2011

Generalizing an SVO template

by cross-product exploding the FST (is ok!)

 S V O
GM manufactures cars.

illustrates a general pattern for recognizing a company’s activities. But the
same semantic content can appear in a variety of ways, including

Cars are manufactured by GM ...
GM, which manufactures cars ...
... cars, which are manufactured by GM ...
... cars manufactured by GM ...
GM is to manufacture cars.
Cars are to be manufactured by GM.
GM is a car manufacturer.

These are all systematically related to the active form of the sentence.
Therefore, there is no reason a user should have to specify all the
variations. The FASTUS system is able to generate all of the variants of the
pattern from the simple active (S-V-O) form.
These transformations are executed at compile time, producing the more
detailed set of patterns, so that at run time there is no loss of efficiency.

34Saturday, November 26, 2011

this is starting to look more like semantic roles --
they’re generalizing over different types of syntactic relations
to get the semantic arguments.

there’s a space/time tradeoff here -- they’re going for high space, since you cross-product
all these syntactic variations against every S-V-O active voice triple given by the user. then
you have a fast FST for runtime.

(4/5) Domain Events
(5/5) Merge Structures

Bridgestone Sports Co. said
Friday it has set up a joint
venture in Taiwan with a local
concern and a Japanese
trading house to produce
golf clubs to be shipped to
Japan.

The joint venture, Bridgestone
Sports Taiwan Co.,
capitalized at 20 million new
Taiwan dollars, will start
production in January 1990
with production of 20,000 iron
and “metal wood” clubs a month.

35Saturday, November 26, 2011

Run all the templated patterns, they extract all these events. but they’re fragmentary and talk
about the same things. we need to merge them.

(4/5) Domain Events
(5/5) Merge Structures

Decide identity coreference
through name-matching and type

compatibility; if arguments are
coreferent, merge events

36Saturday, November 26, 2011

have to do coreference. sometimes making assumptions that these events are the same. this
is kind of ok in these short newswire articles, because all the text is describing the same
thing, or various aspects of it. simple discourse structures let you get away with sweeping
assumptions.

The template as pragmatics
One of the lessons to be learned from our FASTUS

experience is that many information extraction tasks are
much easier than anyone ever thought. Although the full
linguistic complexity of the texts is often very high, with

long sentences and interesting discourse structure
problems, the relative simplicity of the information-

extraction task allows much of this linguistic complexity
to be bypassed—indeed much more than we had

originally believed was possible. The key to the whole
problem, as we see it from our FASTUS experience, is to

do exactly the right amount of syntax, so that
pragmatics can take over its share of the load.

37Saturday, November 26, 2011

... like you’re talking to a robot that only cares about terrorist activities in latin america, and
tries really really hard to interpret everything like this.

Empirical Rule-based NLP
• Originally FASTUS was just a preprocessor for a

more complex system. It was too slow, they threw it
out -- deadline pressure

• Hours vs Minutes runtime on development set --
much faster development iterations

January: Designed FASTUS
Jan-May: Development
May 6: First test of the FASTUS system on a blind test set of 100 terrorist reports, which
had been withheld as a fair test, and we obtained a score of 8% recall and 42% precision.
 At that point we began a fairly intensive effort to hill-climb on all 1300 development
texts then available, doing periodic runs on the fair test to monitor our progress. This effort
culminated in a score of 44% recall and 57% precision in the wee hours of June 1, when
we decided to run the official test. The rate of progress was rapid enough that even a few
hours of work could be shown to have a noticeable impact on the score. Our scarcest
resource was time, and our supply of it was eventually exhausted well before the point of
diminishing returns.
We were thus able, in three and a half weeks, to increase the system’s F-score by 36.2
points, from 13.5 to 49.7.

CFG

FST

Han
d-

bu
ilt

Le
ar

ne
d

38Saturday, November 26, 2011

wish i could find it, there’s this amazing graph of their F-Score over time. they throw out the
parser, it starts increasing.

note they have sizable team working on this. need the strictly modular pipeline to stay sane.

The quick-and-dirty 75% solution

The FASTUS system was an order of magnitude faster than the
other leading systems at MUC-4.

Out of the seventeen sites participating in MUC-4, only General
Electric’s system performed significantly better (a recall of 62%
and a precision of 53% on the first test set), and their system had
been under development for over five years (Sundheim, 1992).

Human intercoder reliability on information extraction tasks is in
the 65-80% range. Thus, we believe this technology can perform at
least 75% as well as humans.

(Claims are a
little strong,
but point
stands)

39Saturday, November 26, 2011

Advantages of rule-based NLP
• Practically speaking, often not enough labeled data and unsupervised

learning is a science project -- a little linguistic knowledge can go a long way

• Rule-based systems are state-of-the-art for some NLP tasks

• Tokenization -- problem so simple
(and many other small tasks... e.g. orthographic normalization)

• Coreference -- problem so complex (CoNLL 2011, Stanford “DCoref”)

• Morphology (?)

• Finite state languages

• Feature engineering

• Time, date recognition...

• William story about Minorthird

• Key lesson from FASTUS: use empirical methodology to keep on track

• Editorial: compared to machine learning, rule-based development forces you
to look at the data -- the most important part in any approach

40Saturday, November 26, 2011

Since the mid-90’s...

1. Complex Words

2. Basic Phrases

3. Complex Phrases

4. Domain Events

5. Merging Structures

Linguistically general
(~syntax)

�

�
Domain specific

(~semantics)

Text

Structure

41Saturday, November 26, 2011

the FASTUS pipeline roughly corresponds to the full text analysis pipeline needed by any NLP
document-understanding application.

Since the mid-90’s...

1. Complex Words

2. Basic Phrases

3. Complex Phrases

4. Domain Events

5. Merging Structures

Syntax: Lots of work.
POS, NER tagging,

phrase chunking, structure
parsing, dependency parsing...

Text

Structure

Event Semantics: Far less work.
e.g. Chambers/Jurafsky 2011, learning the templates

[with a crazy ad-hoc clustering cascade]
Haghighi/Klein 2010, template IE [with a crazy giant

graphical model](remember, ignoring
logical semantics,

discourse ...)

Pattern Learning: Lots of work.
Riloff bootstrapping...

Open IE (NELL, TextRunner)

�

�

42Saturday, November 26, 2011

the most work has gone into syntactic analysis.

closer to IE, lots of work has sought to address the narrowness and brittleness of these per-
domain handcrafted patterns.

Conclusions:
frames and finite-state IE

• Concrete empirical tasks we see today may have
interesting theoretical roots

• Interesting theories need concrete empirical
definitions

• Finite-state patterns and hand-built rules: more
powerful than you might think. Try the 80%
solution first.

• Many open areas of research

43Saturday, November 26, 2011

44Saturday, November 26, 2011

45Saturday, November 26, 2011

Bridgestone Sports Co. said
Friday it has set up a joint
venture in Taiwan with a local
concern and a Japanese trading
house to produce golf clubs to
be shipped to Japan.

The joint venture, Bridgestone
Sports Taiwan Co., capitalized
at 20 million new Taiwan
dollars, will start production in
January 1990 with production
of 20,000 iron and “metal
wood” clubs a month.

OutputInput

46Saturday, November 26, 2011

