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Outline

• Problem

• Theoretical foundations: frames and scripts

• The template-filling paradigm

• Early methods

• Rule-based

• Rule-based and empirically driven: 

SRI FASTUS case study
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(e.g. CFG) -- Higher on Chomsky Hierarchy

(e.g. FST) -- Lower on Chomsky Hierarchy
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FASTUS system HMMs,
Chain CRFs

PCFGs,
Tree CRFs

(It’s all Structured Prediction)
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we can break down structured prediction methods into two dimensions.
first is how high up the chomsky hierarchy you go -- the level of complexity and recurisiveness of your 
structures.  the second is whether you design the models by hand, or learn them from data.

so far in this course, everything weʼve done is on the learned side.  at the finite-state level there are 
things like HMMs or chain CRFs with bounded memory (markovian windows).  at the CFG level thereʼs 
PCFGs and tree CRFs.  and there can be more stuff too, like skip-chain CRFs and various increasingly 
intractable MRFs and stuff.

what we havenʼt talked about, at all, are models built by hand.  these are not as popular any more.  the 
case study for today, the FASTUS system, is in the lower-left quadrant.  but there are interesting 
comparisons both up and to the right quadrants.



Natural Language 
Understanding

• For question-answering, dialogue systems, story 
understanding, etc…  one subproblem: want a 
relational meaning representation

• (Why relational?)

• Predicate-Argument structures

• e.g.  V(S, O): verb has noun arguments

• (~Verb)  Actions/Events/Frames, having 

• (~Noun)  Roles/Slots/Arguments
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why relational -- you could communicate about the world with single symbols of individual propositions, but thatʼs wasteful, you 
cross-product out the space too much.  Language is compositional and combinatorial, suggesting we use some sort of 
relational structures to communicate, and this might be a requirement for a meaning representation.

the way to do this is with Predicate-Argument structures.
in syntax, the most basic of all is a subject-verb-object.  the verb is a predicate, and it has two noun arguments, a subject and 
an object.  now this isnʼt the whole story of course, thereʼs many other arguments and such in language -- adjectives can 
modify nouns, nouns can modify nouns, etc.  but SVO is most basic.

when you start talking about semantics, you generalize the Predicate-Argument pairs beyond verbs and nouns.  for example, 
for the predicate, you might have actions, events, or frames, and one of those has a number of roles, slots, or arguments.  
(following our example, verbs often denote actions and events, though other linguistic things can too.)  there are many different 
types of Predicate-Argument structures, potentially.



Example

Text I saw a person

SVO syntactic 
structures

see(I, person)
[verb=see,  subj=I,  directobj=person]

Semantic roles [event=see, agent=I, patient=person]

(Caveat, IANALinguist!)
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here are some simple examples.

semantic roles -- for this simple example all weʼve done is rename the arguments, but these are 
supposed to generalize beyond syntax and encode certain types of recurring roles across verbs.  some 
people argue there is a core set of several or maybe a dozen semantic roles.  the agent has volition 
and is causing actions to happen, the patient is a target of the action, an instrument is the means of 
accomplishing the action, etc.  

i always get confused, iʼm not a linguist.  some people argue that semantic roles donʼt hold across 
verbs, that all you do with them is to normalize across different syntactic manifestations.  but whatever, 
in any case there is potential value in representing semantics with predicate-argument structures.



Example

Text I saw a person

Feature-
structure 

(frame-style?) 
representation

type= SeeingEvent
time= Past
subj= [word= I, 
           grampers=1st,
           num= sg]
...

��

(High-level syntax like LFG / HPSG?)
(Or is it low-level semantics?)
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once you go into these pred-arg structures, you can start stuffing in all sorts of features for different 
grammatical and semantic attributes.  ok, this diagram is conflating semantick-y things with high-level 
syntactic analysis youʼd see in a unification grammar like lfg or hpsg.  but you might have stuff like, the 
verb is in the past tense so we know the time the event happened was in the past ... the subject word is 
1st-person-singular, etc.  lots more predicates and arguments.



Example

Text I believe I saw a person

Frame-style 
representation

ctx(TopCtx)
ctx(BeliefCtx)
inctx(TopCtx,  event(believe))
inctx(TopCtx,  agent(believe, I))
inctx(TopCtx,  theme(believe, BeliefCtx))
inctx(BeliefCtx,  event(see))
inctx(BeliefCtx,  agent(see, I))
inctx(BeliefCtx,  patient(see, person))

(Factivity via Davidsonian semantics,
description/modal logic formalism: Bobrow et al 2005)

event= believe
agent= I
theme= BeliefCtx

event= see
agent= I
patient= person

TopCtx => BeliefCtx =>
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or hereʼs more information, contexted events.  now the sentence is more complex.  the believing event and the seeing of a 
person event, you could call them “facts” or “propositions”, but they arenʼt quite true in the same way.  one approach is to use 
a “contexted logic”, so you say thereʼs a top context or possible world of the speakerʼs statement, in which the believing event 
happened, then within the world of the belief, this seeing event happened, and youʼre allowed to make the imaginary-world-
context the object (“theme” I think??) of the believing.

note you can represent this in a flatter pred-arg structure that looks like a list of logical assertions.  assert there are two 
differnet contexts, then facts (the little pred-arg tuples comprising the event tuples) are asserted within a given context.

anyways, this has more structure than the previous examples, but the point is thereʼs all sorts of different semantic 
phenomena you want various sorts of predicate-argument structures for.  now letʼs turn back to the simplest flat pred-arg 
structres we had with semantic role events.



Rough sketch: different theoretical traditions?
(leaving out logical semantics, discourse... just flat pred-arg structures)

Case Grammar
Fillmore 1964,

“The Case for Case”

Frames
Schank and Abelson 1977,

“Scripts, Plans, Goals, 
Understanding”

Computational Linguistics Artificial Intelligence

FrameNet
VerbNet
PropBank

(OntoNotes)

Semantic Role Labeling

MUC
ACE

(GENIA)

Template-Filling IE

ACL, EMNLP... (MUC), AAAI...

The
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y
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Both are predicate-argument
recognition problems;

structurally similar.

More recent work 
merges annotation levels:
i.e. OntoNotes, GENIA
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this is a horribly reductionist diagram, but there is a genuine bit of separation in these literatures.  linguistics and AI are 
different areas.  what weʼve been talking about with the semantic roles and such basically derives from Fillmoreʼs classic 
theory of Case Grammar, with lots of other work by others through the years (Jackendoff, Levin, others iʼm forgetting).  the 
theories are nice, but to make it concrete you need to make datasets that computers can read.  in this vein, ones you may 
have heard of include framenet, verbnet, propbank, and current work is on ontonotes.  Then for any of these, you can analyze 
text and label it with its lexicon and labels.  this is a structured prediction task, and itʼs called semantic role labeling.

but thereʼs another theoretical tradition too -- frames, or sometimes called scripts.  again lots of people working on this but one 
of the big names is roger schank; schank and abelson 1977 is the main book on it.  iʼll argue that it eventually evolved into 
what we now call “template-filling information extraction.”, typified by the MUC competition and datasets.  also ACE, and also 
the biomed IE corpus GENIA, though i think that one became more broad over the years.

anyways, the SRL and template-filling IE tasks are, as structured prediction problems, extremely similar.  when you read the 
literature there are funny holes and stuff because people in different research communities tend to publish about different 
ones.  however recent work has merged these strands more and more; both ontonotes and genia have multilevel annotations 
from syntactic to more semantic labels.



Scripts/Frames
Schank and Abelson (1977)
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the schank and abelson book is kind of crazy and maddeningly vague, but still a bit interesting.  i tried to find one picture that 
might tell something useful about the theory, so here we go.

PTRANS -- physical transfer, like john moved john to the restaurant
MTRANS
ATRANS
rE -- effect resulting from
E

schank is still around.  his website is crazy, take a look.  he had lots of students, many of them are still around at various 
universities (like ed hovyʼs talk a few weeks ago, he was a schank student), two of his former students are here at cmu.  if you 
talk to anyone over 50 or 60 who was in AI back in those days, try asking about roger schank, you will get extremely strong 
opinions.  it is interesting.



Newswire IE:  “Sketchy Scripts”

• Gerald DeJong 1982, “FRUMP System”

• The first template-filling IE system?
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gerald dejong is now at uiuc

everyone cites this paper as the first template-filling IE system.  the william cohen and andrew mccallum kdd03 tutorial cites it, 
and jurafsky and martin book does so too.  so it must be true.

itʼs in this edited volume here filled mostly with schankian stuff.  this one is interesting for a reason weʼll get to.

here is an example sketchy script -- it loosely suggests a collection of events that should go together, i guess with a temporal 
order maybe.

itʼs almost like a parody of a hollywood producer or something.

if you go make a probabilistic narrative model, run this on Law and Order episodes.  make sure you get really low cross 
entropy



What it does

Script: “country taking 
economic control of an 
industry from another”

System output

Input text
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he wrote the template, that specifies types of arguments -- a “sketchy script”.
the system fills out a template based on input text from a newswire article.
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i guess you dont have page limits in edited volumes.
he’s annotating the debug output of the system.
the algorithm it’s running is some crazy heuristic search thing.
there’s a semantic module that knows about the script,
and a text analysis module that looks at the text and tries to match it into the slots and they 
go back and forth.
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several pages later you get an answer.  boom.

now, the biggest criticism of the schankians they wrote these crazy things with only a few 
dozen words of lexical coverage and ran them on like one or two stories or something.  very 
bad generalization.

but there’s something cool here -- a real-world test!  they took the new news that came out 
every day and ran it through their system.  they’re trying to detect several script templates 
here.

you know everyone wants real-time streaming twitter analysis now?  this is the same thing.  
but with newswire, and lisp.



(unusually statistical for a Schankian, and in 1982!)
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it’s a confusion matrix!  (sum and divide among the columns to get precision and recall.)

ok we can complain, what does “Nearly Correct” mean.  but at least they’re doing something 
here.  and it really was a hidden test set.



• Analyze time-series of friendly vs. hostile 
country-country interactions, coded from 
newswire text

• Manual coding (~1960’s): hire undergrad annotators 
to read thousands of articles

• Machine coding (KEDS) -- based on SVO 
extraction

Phil Schrodt (1993, 1994... 2011)
http://eventdata.psu.edu/

Application: event analysis in 
international relations
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no one in computer science knows about this work but it is cool.

the system phil schrodt built is, as far as i could tell from some of the papers about it, mostly 
about SVO extraction, often from just the first sentence of a newswire article.  but they’re 
been running it and working on variants of it, for years now.

Kansas Event Data System -- now he’s at Penn State, so i think the name has changed.

http://eventdata.psu.edu/
http://eventdata.psu.edu/


Application: event analysis in 
international relations
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here are coding standards political scientists made, decades before anyone tried to use IE to 
do it.  undergrads annotated lots of articles with this.  they worried a lot about interannotator 
agreement and stuff like that.  here’s an example of a time series of events.



Application: event analysis in 
international relations

(These graphs are from manual 
coding; IE evaluations in Schrodt and 
Gerner 1994, King and Lowe 2001)
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you can see various international events, like cold war to detente, or the first intifada.  also 
they can use this data to answer substantive questions, like the temporal relationship of arms 
sales to friendly vs. hostile interactions between countries.  (cross-correlation: ?ccf in R)



• Bakeoff format: shared task, dataset, hidden test set 
for competitive evaluation

• Different domains – involving specific events

• (1987) MUC-1:  Fleet operations

• (1991-2) MUC-3, 4:  Terrorist activities in Latin America

• (1993-7)  Corporate Joint Ventures, Microelectronic 
production, Negotiation of Labor Disputes, Airplane 
crashes, and Rocket/Missile Launches

• ACE (1999-2008) – Automated Content Extraction

Message Understanding 
Conferences (MUC)
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this may have been the first bakeoff format shared task in NLP -- at least if you don’t count 
speech and information retrieval, which had these things for a while beforehand.  

ACE is kind of a follow-up to MUC.  it has more data and annotations



MUC Template-Filling IE
Output: extract an event 
record (“terrorist attack”) 

with the following attributes:

Input: text
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here’s the task.  note the very domain-specific template.  there are several high-level roles or 
argument types -- incident, perpetrator, targets.  the system has to fill in the template with 
fragments of text from the document.



FASTUS System 

• Hobbs, Appelt, Bear, Israel, Kameyana, Stickel, Tyson 1997,  
“A Cascaded Finite-State Transducer for Extracting 
Information from Natural-Language Text.”

• From SRI, for early-90‘s MUC

• Hand-built patterns -- but statistically guided 
development

• Great case study: realistic end-to-end system, with clear 
architecture, formalisms, and engagement with the data

• Example of how to build a rule-based NLP system -- useful 
skill in a pinch
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Recognizer/Chunker Pipeline

1. Complex Words

2. Basic Phrases

3. Complex Phrases

4. Domain Events

5. Merging Structures

Linguistically general
(~syntax)

�

�
Domain specific

(~semantics)

Text

Structure
[Every stage is a Finite State Transducer]
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FST’s for recognition 
(Xerox FST syntax: think of it as a super-regex)

open-source implementation:  http://code.google.com/p/foma/wiki/ExampleScripts

# DateParser.script
# Copyright (C) 2004  Lauri Karttunen

define Day     [{Monday} | {Tuesday} | {Wednesday} | {Thursday} |
                {Friday} | {Saturday} | {Sunday}] ;
define Month29 {February};
define Month30 [{April} | {June} | {September} | {December}];
define Month31 [{January} | {March} | {May} | {July} | {August} |
                {October} | {December}] ;
define Month   [Month29 | Month30 | Month31];

# Numbers from 1 to 31
define Date    [OneToNine | [1 | 2] ZeroToNine | 3 [%0 | 1]] ;
# Numbers from 1 to 9999
define Year [OneToNine ZeroToNine^<4];
# Day or [Month and Date] with optional Day and Year
define AllDates [Day | (Day {, }) Month { } Date ({, } Year)];

[...]
define ValidDates [AllDates & MaxDays & LeapDates];
define DateParser [ValidDates @-> "<DATE>" ... "</DATE>"];

Add tags 
for later 

processing
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Lauri Karttunen is famous for lots of finite-state morphology stuff.  i think this is a demo 
script he wrote for identifying dates in a text with an FST.

actually nearly all of it is just FSA-like.  the key bit for how you use it is the bottom.  it spits 
out these XML-ish tags around the strings matching ValidDates pattern.  this is what FST’s 
can do.

(note they do more complicated stuff for morphology)

this is actually an open-source implementation of Xerox’s pattern language for FST’s.  it is 
fairly new.  i believe it compiles to target OpenFST, a lower level algorithmic library for 
weighted FST’s; it does all the unions and minimization and other finite state stuff, so 
compiles this pattern script into an FST that does date recognition.  (OpenFST, in turn is a 
clone of the old AT&T finite state libraries.)

http://code.google.com/p/foma/wiki/ExampleScripts
http://code.google.com/p/foma/wiki/ExampleScripts


FSA’s for recognition 
(Perl-style regex for emoticons)

NormalEyes = r'[:=]'
Wink = r'[;]'

NoseArea = r'(|o|O|-)'   ## rather tight precision, \S might be 
reasonable...

HappyMouths = r'[D\)\]]'
SadMouths = r'[\(\[]'
Tongue = r'[pP]'
OtherMouths = r'[doO/\\]'  # remove forward slash if http://'s 
aren't cleaned

Emoticon = (
    "("+NormalEyes+"|"+Wink+")" +
    NoseArea + 
    "("+Tongue+"|"+OtherMouths+"|"+SadMouths+"|"+HappyMouths+")"
)

https://github.com/brendano/tweetmotif/blob/master/emoticons.py
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heck, you can even use standard perl/unix regexes for recognition.  half the battle in 
maintainability is just decomposing the rules with nice names.  no one does this when you 
have the hacky perl mentality, but you totally can.  here’s one i wrote for emoticons.

note there are precision/recall tradeoffs with every decision you make when writing rules like 
this.  for example, forward-slash for emoticon mouth gives horrible false positives if there 
are URLs in the text  :/

https://github.com/brendano/tweetmotif/blob/master/emoticons.py
https://github.com/brendano/tweetmotif/blob/master/emoticons.py


(skipping ahead, FASTUS stage 4)

Event Patterns
<Company/ies> <Set-up> <Joint-Venture> 

with <Company/ies>Bridgestone Sports Co. said 
Friday it has set up a joint 
venture in Taiwan with a local 
concern and a Japanese trading 
house to produce golf clubs to 
be shipped to Japan.

The joint venture, Bridgestone 
Sports Taiwan Co., capital- ized 
at 20 million new Taiwan 
dollars, will start production in 
January 1990 with production of 
20,000 iron and “metal wood” 
clubs a month.

<Produce> <Product>
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ok back to FASTUS.  skipping ahead, here’s the core of the algorithm.
you have to write lots of these templated patterns for a particular template you want to be 
filling.  these patterns were made to identify instances of these two different events.
[[ BTW -- see “AIML”, AI Markup Language, people use it to make chatbots.  it’s basically lots 
of patterns kind of like this.  ELIZA kind of worked like this. ]]
Already you can see, if you were running this directly on sequence of words in the text, you 
have problems.  all these multiwords and names, and then relative clauses and stuff 
separating the words you actually care about.  need to do some syntactic analysis first.



(1/5)  Complex Words

• Multiword 
expressions

• Names

1. Complex Words

2. Basic Phrases

3. Complex Phrases

4. Domain Events

5. Merging Structures

Text

Structure
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back to the pipeline.  this first part is simple.  you have to have lists of names, and heuristics 
for identifying types of names like “Co.” meaning “company”.

BTW, lots of issues here in modern NLP analysis too



(2/5)  Basic Phrases

• Small noun chunks

• Verb chunks

• Function word classes

• Some entity classes

• ... this is dictionary 
lookup + contextual 
disambiguation.  
Compare to CRF/
HMM?
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this is now called “chunking” -- the sentence is divided into non-overlapping subsequences 
of tokens.  imagine the rules for each one -- not too hard to get started.

lots of trickiness though.  for example, there’s probably a preposition regex including “to”.  
but “to be” needs to be a verb, and needs to want to grab the next verb to the right “shipped”.  
you can imagine lots of priority orderings and overrides.  i good pattern rule language should 
let you do these things.

note that, fundamentally, these are the same sources of information as in a HMM or CRF 
chunker/tagger.  emissions weights are soft versions of lexicons (FST-unions).  transition 
weights are local contextual information.  etc.



(these would be called “noun chunks” now)

Finite-state syntactic parsing!
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(3/5)  Complex Phrases
• Complex noun groups (noun phrases):  PP attachments, 

appositives, noun conjunction

• Complex verb groups:  Conjunctions, auxiliaries, modalities

Collapse 
across some 
verb 
auxiliaries ...
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“announced it was forming” as a synonym to “form” -- at a deep natural language 
understanding level, these are different.  but perhaps in this domain, if you’re a business 
analyst or something, they’re as good as synonyms.



(3/5)  Complex Phrases
• Complex noun groups (noun phrases):  PP attachments, 

appositives, noun conjunction

• Complex verb groups:  Conjunctions, auxiliaries, modalities

The status of the joint venture is “Planned” rather than 
“Existing”:

GM will form a joint venture with Toyota.
GM plans to form a joint venture with Toyota.
GM expects to form a joint venture with Toyota.
GM announced plans to form a joint venture with Toyota.

Collapse 
across some 
verb 
auxiliaries ...

but not others
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but sometimes the modalities really do matter.  “planning to” is weak and soft in this domain 
compared to “announced”.



Other finite-state technology 
in NLP

• Pereira 1990 -- finite-state approximations of 
grammars

• Abney 1996 -- finite-state partial parsing via 
cascades (still can download his CASS system)

• Morphology -- e.g. Inxight analyzer

• Book: Finite State Devices for Natural Language 
Processing, ed. Roche and Schabes, 1997 
(containing the Hobbs article)

30Saturday, November 26, 2011

ok, that’s the core of their syntax system.

this is a lot of fairly sophisticated syntactic analysis.  if someone told you you need a recursive 
CFG-style parser to do this, maybe you don’t always.  there’s been lots of work along these 
lines.

also, finite-state methods are especially popular in morphology, where they’re a pretty 
plausible explanation of lots of the phenomena.



(e.g. CFG) -- Higher on Chomsky Hierarchy

(e.g. FST) -- Lower on Chomsky Hierarchy
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FASTUS system,
stuff on last slide

HMMs,
Chain CRFs

PCFGs,
Tree CRFs

(It’s all Structured Prediction)

Hand-built
CFG, etc
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hmms and chain crfs are pretty popular these days.  maybe the finite-state level of the 
chomsky hierarchy is good enough, especially if you hack it up for a little bit of depth-
bounded structure...



(4/5):  Domain Events
(5/5): Merge Structures

<Company/ies> <Set-up> <Joint-Venture> 
with <Company/ies>Bridgestone Sports Co. said 

Friday it has set up a joint 
venture in Taiwan with a local 
concern and a Japanese trading 
house to produce golf clubs to 
be shipped to Japan.

The joint venture, Bridgestone 
Sports Taiwan Co., capital- ized 
at 20 million new Taiwan 
dollars, will start production in 
January 1990 with production of 
20,000 iron and “metal wood” 
clubs a month.

<Produce> <Product>
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“Pseudo-Syntax”
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Generalizing an SVO template

by cross-product exploding the FST  (is ok!)

  S              V             O
GM manufactures cars.

illustrates a general pattern for recognizing a company’s activities. But the 
same semantic content can appear in a variety of ways, including

Cars are manufactured by GM ...
GM, which manufactures cars ...
... cars, which are manufactured by GM ...
... cars manufactured by GM ... 
GM is to manufacture cars. 
Cars are to be manufactured by GM. 
GM is a car manufacturer.

These are all systematically related to the active form of the sentence. 
Therefore, there is no reason a user should have to specify all the 
variations. The FASTUS system is able to generate all of the variants of the 
pattern from the simple active (S-V-O) form.
These transformations are executed at compile time, producing the more 
detailed set of patterns, so that at run time there is no loss of efficiency.
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this is starting to look more like semantic roles --
they’re generalizing over different types of syntactic relations
to get the semantic arguments.

there’s a space/time tradeoff here -- they’re going for high space, since you cross-product 
all these syntactic variations against every S-V-O active voice triple given by the user.  then 
you have a fast FST for runtime.



(4/5)  Domain Events
(5/5)  Merge Structures

Bridgestone Sports Co. said 
Friday it has set up a joint 
venture in Taiwan with a local 
concern and a Japanese 
trading house to produce 
golf clubs to be shipped to 
Japan.

The joint venture, Bridgestone 
Sports Taiwan Co., 
capitalized at 20 million new 
Taiwan dollars, will start 
production in January 1990 
with production of 20,000 iron 
and “metal wood” clubs a month.
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Run all the templated patterns, they extract all these events. but they’re fragmentary and talk 
about the same things.  we need to merge them.



(4/5)  Domain Events
(5/5)  Merge Structures

Decide identity coreference 
through name-matching and type 

compatibility; if arguments are 
coreferent, merge events
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have to do coreference.  sometimes making assumptions that these events are the same.  this 
is kind of ok in these short newswire articles, because all the text is describing the same 
thing, or various aspects of it.  simple discourse structures let you get away with sweeping 
assumptions.



The template as pragmatics
One of the lessons to be learned from our FASTUS 

experience is that many information extraction tasks are 
much easier than anyone ever thought.  Although the full 
linguistic complexity of the texts is often very high, with 

long sentences and interesting discourse structure 
problems, the relative simplicity of the information-

extraction task allows much of this linguistic complexity 
to be bypassed—indeed much more than we had 

originally believed was possible.  The key to the whole 
problem, as we see it from our FASTUS experience, is to 

do exactly the right amount of syntax, so that 
pragmatics can take over its share of the load.
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... like you’re talking to a robot that only cares about terrorist activities in latin america, and 
tries really really hard to interpret everything like this.



Empirical Rule-based NLP
• Originally FASTUS was just a preprocessor for a 

more complex system.  It was too slow, they threw it 
out -- deadline pressure

• Hours vs Minutes runtime on development set -- 
much faster development iterations

January:  Designed FASTUS
Jan-May:  Development
May 6:  First test of the FASTUS system on a blind test set of 100 terrorist reports, which 
had been withheld as a fair test, and we obtained a score of 8% recall and 42% precision.
    At that point we began a fairly intensive effort to hill-climb on all 1300 development 
texts then available, doing periodic runs on the fair test to monitor our progress. This effort 
culminated in a score of 44% recall and 57% precision in the wee hours of June 1, when 
we decided to run the official test. The rate of progress was rapid enough that even a few 
hours of work could be shown to have a noticeable impact on the score. Our scarcest 
resource was time, and our supply of it was eventually exhausted well before the point of 
diminishing returns.
We were thus able, in three and a half weeks, to increase the system’s F-score by 36.2 
points, from 13.5 to 49.7.
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wish i could find it, there’s this amazing graph of their F-Score over time.  they throw out the 
parser, it starts increasing.

note they have sizable team working on this.  need the strictly modular pipeline to stay sane.



The quick-and-dirty 75% solution

The FASTUS system was an order of magnitude faster than the 
other leading systems at MUC-4.

Out of the seventeen sites participating in MUC-4, only General 
Electric’s system performed significantly better (a recall of 62% 
and a precision of 53% on the first test set), and their system had 
been under development for over five years (Sundheim, 1992).

Human intercoder reliability on information extraction tasks is in 
the 65-80% range. Thus, we believe this technology can perform at 
least 75% as well as humans.

(Claims are a 
little strong, 
but point 
stands)
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Advantages of rule-based NLP
• Practically speaking, often not enough labeled data and unsupervised 

learning is a science project -- a little linguistic knowledge can go a long way

• Rule-based systems are state-of-the-art for some NLP tasks

• Tokenization -- problem so simple
(and many other small tasks... e.g. orthographic normalization)

• Coreference -- problem so complex (CoNLL 2011, Stanford “DCoref”)

• Morphology (?)

• Finite state languages

• Feature engineering

• Time, date recognition...

• William story about Minorthird

• Key lesson from FASTUS: use empirical methodology to keep on track

• Editorial: compared to machine learning, rule-based development forces you 
to look at the data -- the most important part in any approach
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Since the mid-90’s...

1. Complex Words

2. Basic Phrases

3. Complex Phrases

4. Domain Events

5. Merging Structures

Linguistically general
(~syntax)

�

�
Domain specific

(~semantics)

Text

Structure
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the FASTUS pipeline roughly corresponds to the full text analysis pipeline needed by any NLP 
document-understanding application.



Since the mid-90’s...

1. Complex Words

2. Basic Phrases

3. Complex Phrases

4. Domain Events

5. Merging Structures

Syntax:  Lots of work.
POS, NER tagging,

phrase chunking, structure 
parsing, dependency parsing...

Text

Structure

Event Semantics:  Far less work.
e.g.  Chambers/Jurafsky 2011, learning the templates 

[with a crazy ad-hoc clustering cascade]
Haghighi/Klein 2010, template IE [with a crazy giant 

graphical model](remember, ignoring
logical semantics, 

discourse ...)

Pattern Learning:  Lots of work.
Riloff bootstrapping...

Open IE (NELL, TextRunner)

�

�
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the most work has gone into syntactic analysis.

closer to IE, lots of work has sought to address the narrowness and brittleness of these per-
domain handcrafted patterns.



Conclusions:
frames and finite-state IE

• Concrete empirical tasks we see today may have 
interesting theoretical roots

• Interesting theories need concrete empirical 
definitions

• Finite-state patterns and hand-built rules: more 
powerful than you might think.  Try the 80% 
solution first.

• Many open areas of research
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Bridgestone Sports Co. said 
Friday it has set up a joint 
venture in Taiwan with a local 
concern and a Japanese trading 
house to produce golf clubs to 
be shipped to Japan.

The joint venture, Bridgestone 
Sports Taiwan Co., capitalized 
at 20 million new Taiwan 
dollars, will start production in 
January 1990 with production 
of 20,000 iron and “metal 
wood” clubs a month.

OutputInput
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