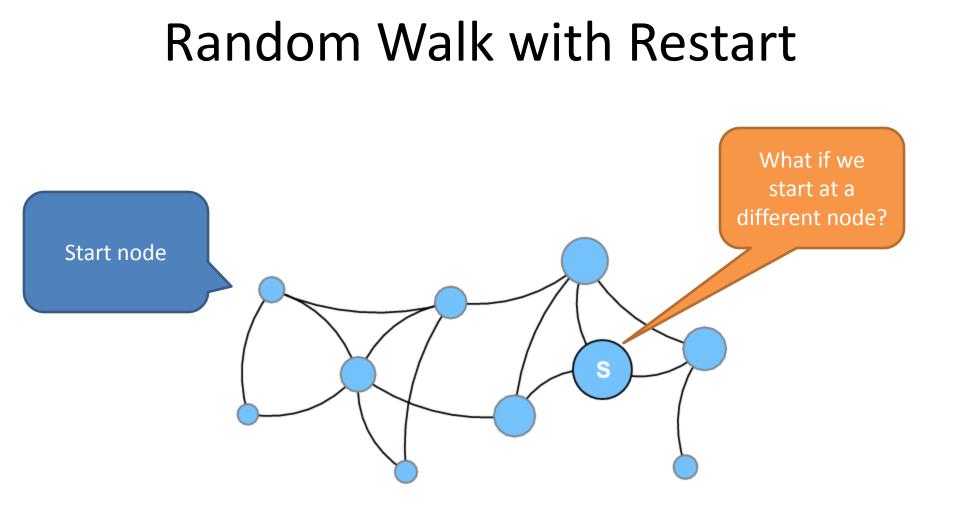
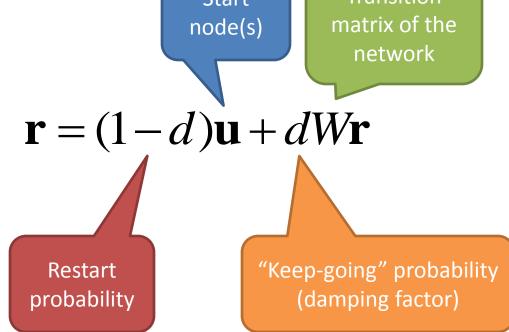
Relation Learning with Path Constrained Random Walks


Ni Lao

Structured Prediction for Language and Other Discrete Data (SPLODD-2011) School of Computer Science Carnegie Mellon University 2011-11-29

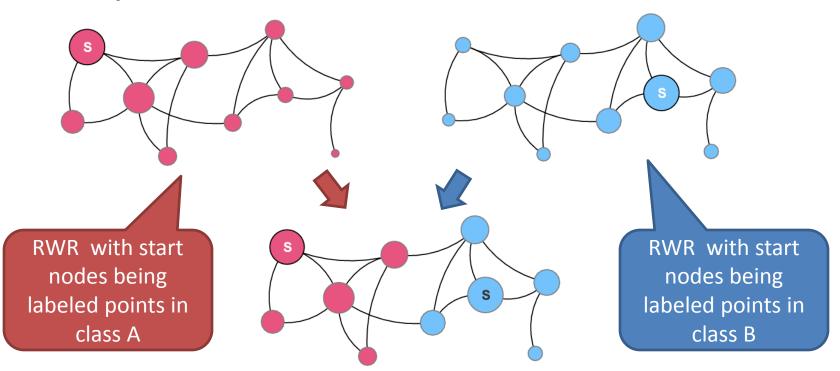
Random Walk with Restart (some background)


- Imagine a network, and starting at a specific node, you follow the edges randomly.
- But with some probability, you "jump" back to the starting node (restart!).

If you recorded the number of times you land on each node, what would that distribution look like?

Random Walk with Restart

• The walk distribution **r** satisfies a simple equation:

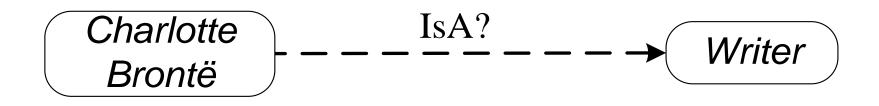

Random Walk with Restart

 Random walk with restart (RWR) can be solved simply and efficiently with an iterative procedure:

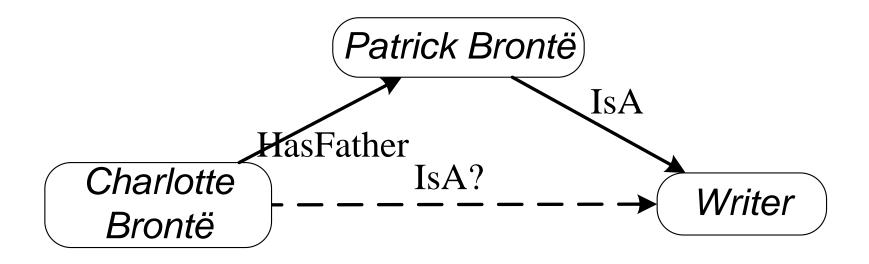
$$\mathbf{r}^{t} = (1 - d)\mathbf{u} + dW\mathbf{r}^{t-1}$$

RWR for Classification

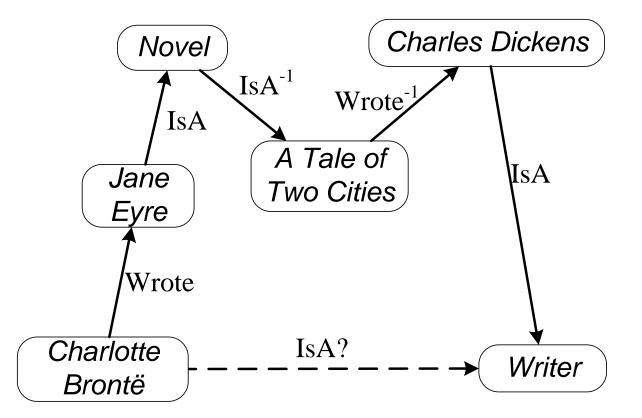
• Simple idea: use RWR for classification


Nodes frequented more by RWR(A) belongs to class A, otherwise they belong to B

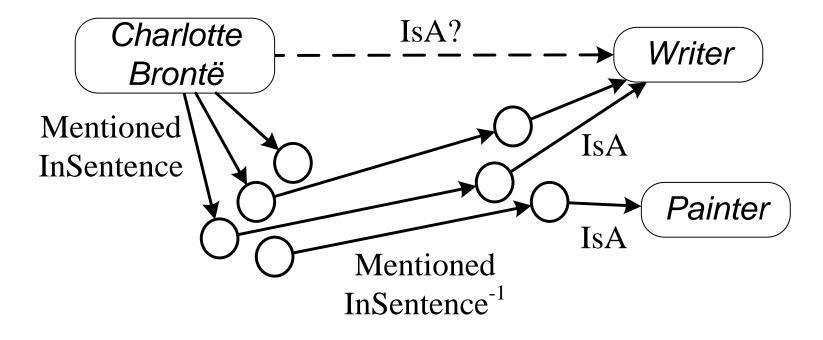
Outline


➡ • Motivation

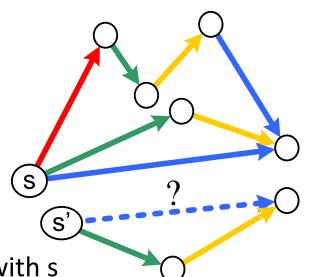
- Relational Learning
- Random Walk Inference
- Tasks
 - Publication recommendation tasks
 - Inference with knowledge base
- Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases
- Efficient Inference (Lao & Cohen, KDD 2010)
- Feature Selection (L. M. C., EMNLP 2011)


• Prediction with rich meta-data has great potential and challenge, e.g.

• Consider friends/family



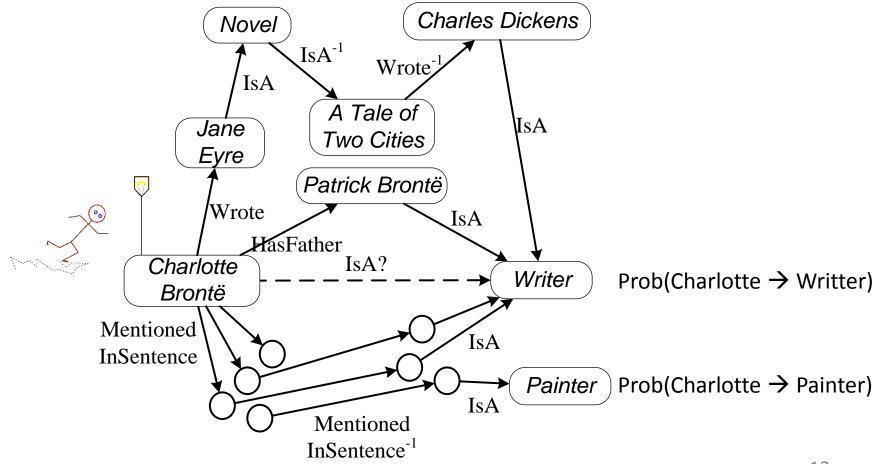
• Consider people's behavior



IsA⁻¹ is the reverse of IsA relation Wrote⁻¹ is the reverse of Wrote relation 10

• Consider literature/publication

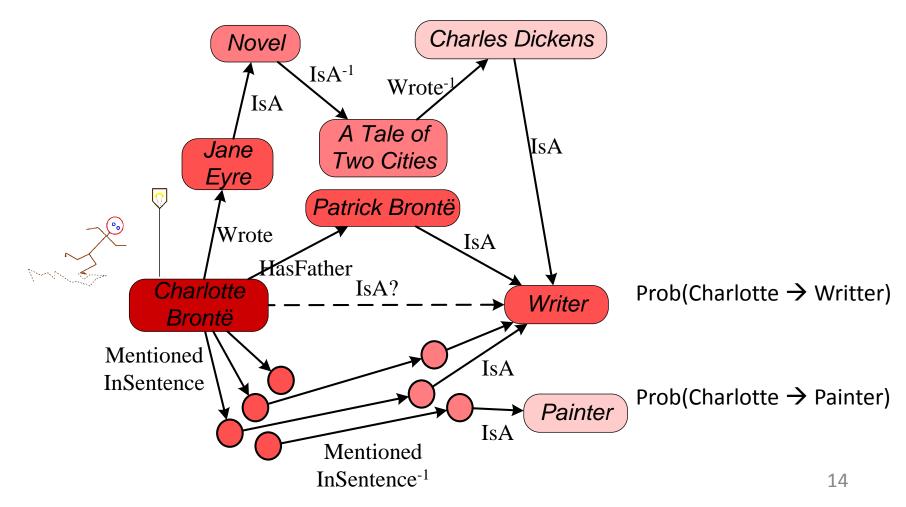
- Task
 - Given
 - a directed heterogeneous graph G
 - a starting node s
 - edge type R
 - Find
 - nodes t which should have edge R with s



- Challenge
 - statistical learning tools (e.g. SVM) expect samples and their feature values
 - feature engineering needs domain knowledge and is not scalable to the complexity of nowadays' data

Why Not Random Walk with Restart

(Will be covered in later classes)


Ignores edge types

Why Not Random Walk with Restart

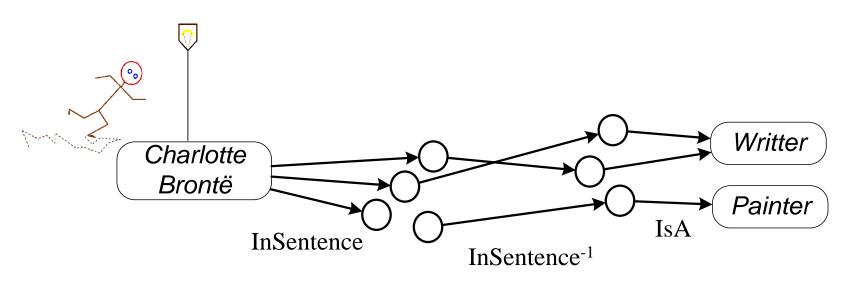
(Will be covered in later classes)

Ignores edge types

Why Not First Order Inductive Learner

• Learn Horn clauses in first order logic (FOIL , 1993)

HasFather(a, b) ^ isa(b,y) \rightarrow isa(a; y) Write(a, i) ^ isa(i, x) ^ isa(j,x) ^ Write(b, j) ^ isa(b,y) \rightarrow isa(a; y) InSentence(a, j) ^ InSentence(b, j) ^ isa(b,y) \rightarrow isa(a; y)


HasFather(x, a) $^{\text{isa}(a, writer)} \rightarrow \text{isa}(x; writer) \leftarrow \text{Lexicalized rule}$

- Drawbacks
 - Horn clauses are costly to discover
 - Inference is generally slow
 - Cannot leverage low accuracy rules
 - Can only combine rules with disjunctions

11/30/2011

Proposed: Random Walk Inference

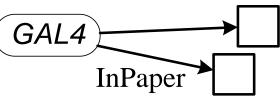
Random walk following a particular edge type sequence can encode certain meaning

Prob(Charlotte → Writer | InSentence, InSentence⁻¹, IsA)

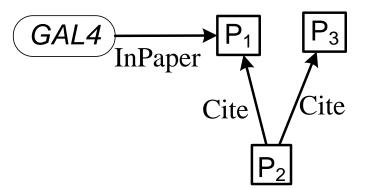
Random Walk Inference

Combine features from different edge type sequences

Prob(Charlotte → Writer | HasFather, isa)
Prob(Charlotte → Writer | Write, isa, isa⁻¹, Write, isa)
Prob(Charlotte → Writer | InSentence, InSentence⁻¹, isa)

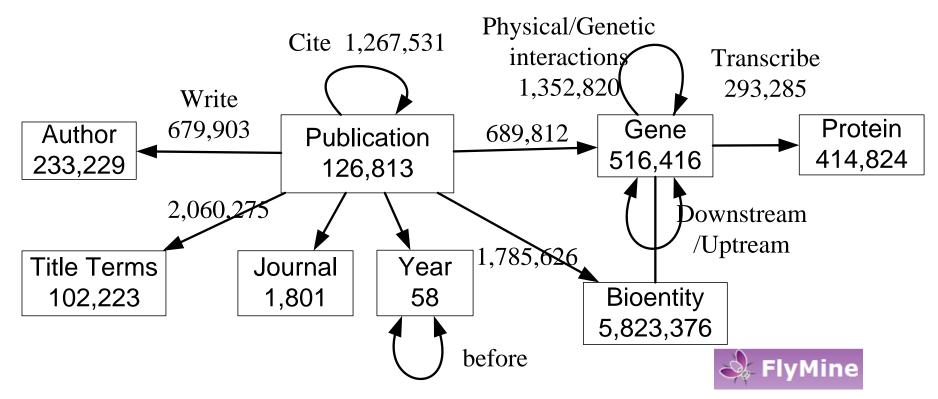

- More expressive than random walk with restart
- More efficient and robust than FOIL

Outline


- Motivation
 - Relational Learning
 - Random Walk Inference
- 🔷 Tasks
 - Publication recommendation tasks
 - Inference with knowledge base
 - Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases
 - Efficient Inference (Lao & Cohen, KDD 2010)
 - Feature Selection (L. M. C., EMNLP 2011)

Recommendation Tasks with Biology Literature Data

- Problem
 - Given a topic e.g. "GAL4"
 - Which papers should I read?
- A simple retrieval approach (e.g. search engine)



• Random walk inference find paths such as

Data sets

- Yeast: 0.2M nodes, 5.5M links
- Fly: 0.8M nodes, 3.5M links

Experiment Setup

- Tasks
 - Gene recommendation: author, year \rightarrow gene
 - Venue recommendation: genes, title words \rightarrow journal
 - Reference recommendation: title words, year \rightarrow paper
 - Expert-finding: title words, genes \rightarrow author
- Data split
 - 2000 training, 2000 tuning, 2000 test

The NELL Knowledge Base

- Never-Ending Language Learning:
 - "a never-ending learning system that operates 24 hours per day, for years, to continuously improve its ability to read (extract structured facts from) the web" (Carlson et al., 2010

S

- Given
 - a knowledge base G
 - a starting node s
 - edge type R
- Find
 - nodes t which should have edge R with s
 - e.g. IsA(Charlotte Brontë,?)

Experiment Setup

- We consider 96 relations for which NELL database has more than 100 instances
- Closed world assumption for training
 - The nodes y known to satisfy R(x; ?) are treated as positive examples
 - All other nodes are treated as negative examples
 - E.g.

Training IsA(Charles Dickens, writter) → true IsA(Charles Dickens, painter) → false

•••

Testing IsA(Charlotte Brontë, ??)

Outline

- Motivation
 - Relational Learning
 - Random Walk Inference
- Tasks
 - Publication recommendation tasks
 - Inference with knowledge base
- Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases
 - Efficient Inference (Lao & Cohen, KDD 2010)
 - Feature Selection (L. M. C., EMNLP 2011)

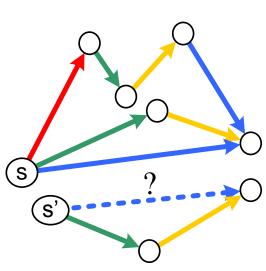
details

Path Ranking Algorithm (PRA)

(Lao & Cohen, ECML 2010)

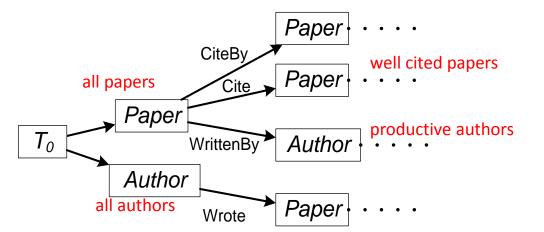
- A relation path $P = (R_1, ..., R_n)$ is a sequence of relations
- A PRA model scores a source-target pair by a linear function of their path features

$$score(s,t) = \sum_{P \in \mathbf{P}} \operatorname{Prob}(s \to t; P) \theta_P$$


- **P** is the set of all relation paths with length $\leq L$
- E.g. IsA(Charlotte, ???)

Prob(Charlotte → Writer | HasFather, isa)
Prob(Charlotte → Writer | Write, isa, isa⁻¹, Write, isa)
Prob(Charlotte → Writer | InSentence, InSentence⁻¹, isa)

details


Training

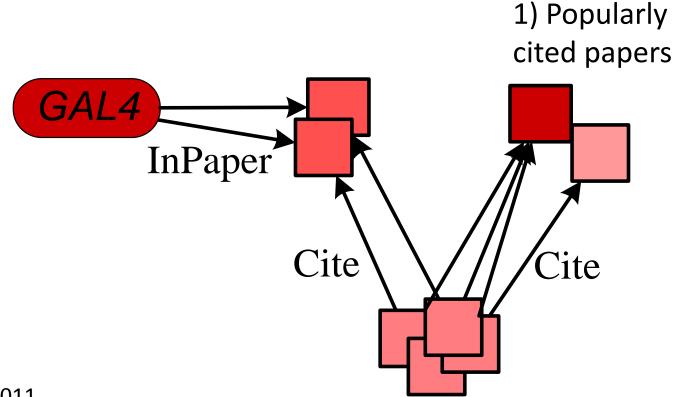
- For a relation R and a set of node pairs {(s_i, t_i)}, construct a training dataset D = {(x_i, y_i)}
 - $-x_i$ is a vector of all the path features for (s_i, t_i)
 - $-y_i$ indicates whether $R(s_i, t_i)$ is true or not
 - $-e.g. s_i \rightarrow Charlotte, t_i \rightarrow painter/writer$
- θ is estimated using classifier
 L1,L2-regularized logistic regression

more details Extension 1: Query Independent Paths

- PageRank in search engines
 - assign an query independent score to each web page
 - later combined with query dependent score
- Generalize to multiple relation types
 - a special entity e_0 of special type T_0
 - $-T_0$ has relation to all other entity types
 - $-e_0$ has links to each entity

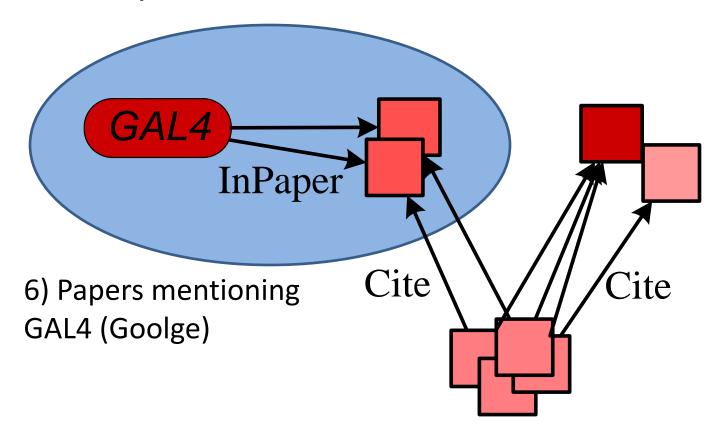
more details Extension 2: Popular Entity Biases

- Node specific characteristics which cannot be captured by a general model
 - E.g. Certain genes have well known mile stone papers
 - E.g. Different users may have different intentions for the same query
- For a task with query type *T*, and target type *T* Introduce a bias θ_ρ for each entity e of type *T*
 - Introduce a bias $\theta_{e',e}$ for each entity pair (e',e) where e is of type T and e' of type T'


Example Features

• A PRA+qip+pop model trained for reference recommendation task on the yeast data

ID	Weight	Feature
	weight	
1	272.4	word $\rightarrow paper \xrightarrow{Cite^{-1}} paper \xrightarrow{Cite} paper$ 1) papers which are cited together
2	156.7	$word \rightarrow paper \xrightarrow{Cite} paper$ with papers of this tonic
3		$gene \rightarrow paper \xrightarrow{Cite} paper \xrightarrow{Cite} paper$
4		$word \rightarrow paper \xrightarrow{Cite^{-1}} paper$
5	50.2	$gene \rightarrow paper \xrightarrow{Cite} paper \qquad \qquad$
6		$word \rightarrow paper$ 7,8) papers cited during
7	29.3	$year \rightarrow paper \longrightarrow paper$
8	13.0	$year \xrightarrow{Before^{-1}} year \rightarrow paper \xrightarrow{Cite} paper$ the past two years
		\circ 11 1
9	3.7	$T^* \rightarrow paper \xrightarrow{Cite} paper$ 9) well cited papers
10	2.9	GAL4>Nature. 1988. GAL4-VP16 is an unusually potent transcriptional activator.
11	2.1	CYC1>Cell. 1979. Sequence of the gene for iso-1-cytochrome c in Saccharomyces cerevisiae.
		10,11) mile stone papers about
12	-5.4	year $\xrightarrow{Before^{-1}}$ year \rightarrow paper specific query terms/genes
13	-39.1	$year \rightarrow paper$
14		$T^* \rightarrow year \rightarrow paper$ 14) old papers


Example Features

Papers which are cited together with papers of this topic

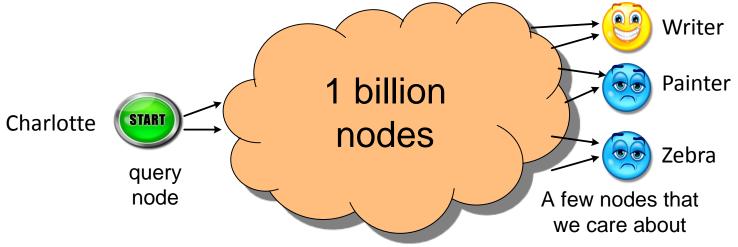
Example Features

Papers which are cited together with papers of this topic

Experiment Result

- Compare the MAP of PCRW to
 - Random Walk with Restart (RWR)
 - query independent paths (qip)
 - popular entity biases (pop)

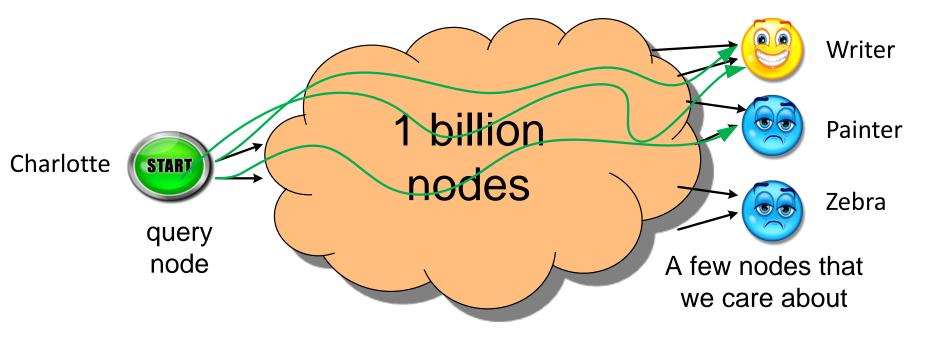
Corpus Task		RWR	PRA					
		${\bf trained}$	trained	+qip	+pop	+qip+pop		
yeast	Ven	44.2	45.7 (+3.4)	$46.4 \ (+5.0)$	48.7 (+10.2)	49.3(+11.5)		
yeast	Ref	16.0	16.9 (+5.6)	18.3(+14.4)	19.1 (+19.4)	19.8 (+23.8)		
yeast	Exp	11.1	$ 11.9\ (+7.2) $	12.4(+11.7)	12.5(+12.6)	12.9(+16.2)		
yeast	Gen	14.4	$ 14.9\ (+3.5) $	15.1 (+4.9)	$ 15.1 \ (+4.9) $	15.3 (+6.3)		
fly	Ven	48.3	50.4 (+4.3)	51.1 (+5.8)	50.7 (+5.0)	51.7 (+7.0)		
fly	Ref	20.5	$20.8(^{+}+1.5)$	21.0 (+2.4)	21.6 (+5.4)	21.7 (+5.9)		
fly	Exp	7.2	$7.6(^{+}+5.6)$	8.3(+15.3)	7.9 (+9.7)	8.5 (+18.1)		
fly	Gen	19.2	20.7 (+7.8)	21.1 (+9.9)	21.1 (+9.9)	21.0 (+9.4)		

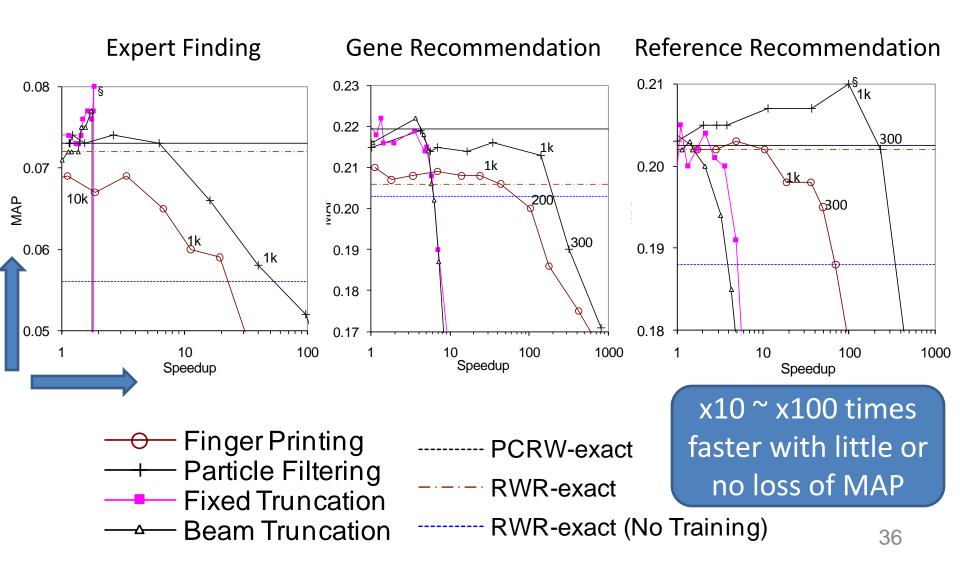

Outline

- Motivation
 - Relational Learning
 - Random Walk Inference
- Tasks
 - Publication recommendation tasks
 - Inference with knowledge base
- Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases
- Efficient Inference (Lao & Cohen, KDD 2010)
 - Feature Selection (L. M. C., EMNLP 2011)

Efficient Inference

(Lao & Cohen, KDD 2010)


- Problem
 - Exact calculation of random walk distributions results in non-zero probabilities for many internal nodes in the graph
- Goal
 - Computation should be focused on the few target nodes which we care about

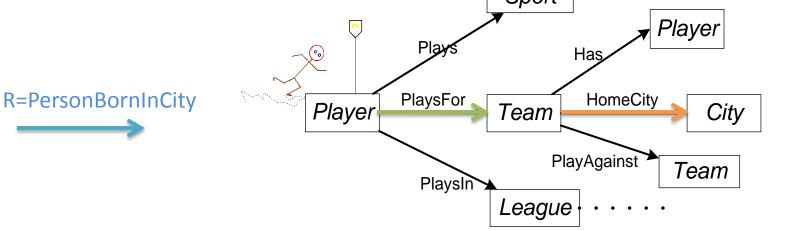

Efficient Inference

Sampling

 A few random walkers (or particles) are enough to distinguish good target nodes from bad ones

Results on the Fly Data

Outline

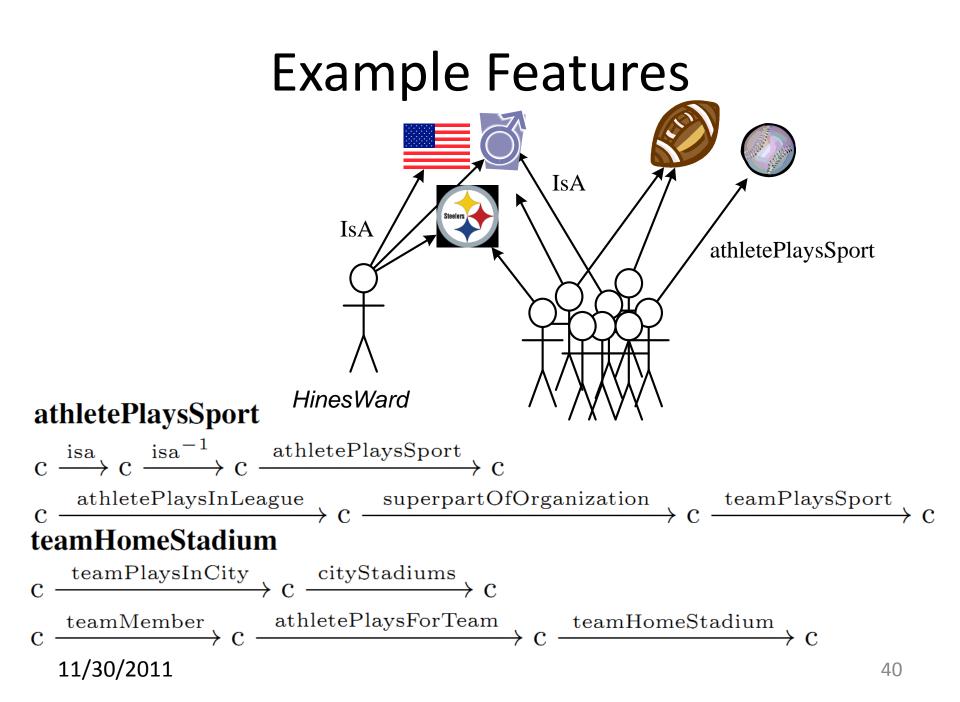

- Motivation
 - Relational Learning
 - Random Walk Inference
- Tasks
 - Publication recommendation tasks
 - Inference with knowledge base
- Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases
- Efficient Inference (Lao & Cohen, KDD 2010)
- Feature Selection (L. M. C., EMNLP 2011)

details Path Finding & Feature Selection

(Lao, Mitchell & Cohen, EMNLP 2011)

38

- Impractical to enumerate all possible edge sequences O(|V|^L)
- How to find potentially useful paths?
 - Constraint 1: paths to instantiate in at least K(=5) training queries
 - Constraint 2: Prob(s \rightarrow t| path , s \rightarrow any node) > α (=0.2)
- Depth first search up to length *l*:
 - starts from a set of training queries, expand a relation if the instantiation constraint is satisfied <u>Sport</u>

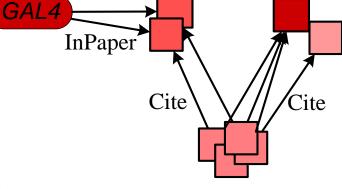


details Path Finding & Feature Selection

Dramatically reduce the number of paths

Table 1: Number of paths in PRA models of maximum path length 3 and 4. Averaged over 96 tasks.

	ℓ=3	ℓ=4
all paths up to length ℓ	15,376	1,906,624
+query support $\geq \alpha = 0.01$	522	5016
+ever reach a target entity	136	792
+ L_1 regularization	63	271


Evaluation by Mechanical Turk

- Sampled evaluation
 - only evaluate the top ranked result for each query
 - evaluate precisions at top 10, 100 and 1000 queries
- 8 functional predicates
- sampled 8 non-functional predicates

Task		#Rules	p@10	p@100	p@1000
Functional Predicates	N-FOIL	2.1(+37)	0.76	0.380	0.071
Functional Predicates	PRA	43	0.79	0.668	0.615
Non-functional Predicates	PRA	92	0.65	0.620	0.615

Conclusion

- Random walk inference for relational learning
 - Efficient
 - Robust
- Future work
 - Discover lexicalized paths
 - Efficiently discover long paths
 - Thank you! Questions?

