
Bayesian unsupervised frame learning from text
Data Analysis Project, draft report

Brendan O’Connor
Machine Learning Department, Carnegie Mellon University

February 22nd, 2012

1 Introduction: Frame induction for corpus analysis

The use of computational methods to explore research questions in the social sciences has boomed
over the past several years, as the volume of data capturing human communication—e.g. massive
social media data streams—has risen to match the ambitious goal of understanding the behaviors
of people and society (Lazer et al., 2009). Automated content analysis of text draws on techniques
developed in natural language processing, information retrieval, and machine learning, and has
been applied to political science, economics, psychology, and many other areas. Statistical sum-
maries of language use in a large corpus can give insight into the opinions, beliefs, and situations
communicated in the texts. In O’Connor et al. (2011), we overview this field and note that while
state-of-the-art techniques have great variety in statistical and computational complexity (as in our
own work (O’Connor et al., 2010a; Eisenstein et al., 2010; O’Connor et al., 2010b; Yogatama et al.,
2011; Bamman et al., 2011), as well as dozens of other examples), in nearly all cases, researchers re-
strict their analysis to word and phrase frequencies. But this falls far short of the insight an expert
can achieve when reading a text—in news, social media, literature, religious texts, and other cor-
pora, the texts can encode beliefs, opinions, events, arguments, and overarching narrative themes.
Can we automatically extract these from raw text?

As a first step, in this project we focus on frame and script learning—inducing a system of typ-
ical events, actors, and actors’ roles, that tend to co-occur within documents. We use a Bayesian
generative modeling approach, building on previous successes in unsupervised learning of latent
semantic structure in documents and language.

2 Frames and scripts

Classic work in artificial intelligence and linguistics proposes that knowledge has a structured
representation of frames, schemata, or scripts (Minsky 1974, Fillmore 1982, Rumelhart 1980, Schank
and Abelson 1977). Figure 1a shows an example from Schank and Abelson, where an utterance
evokes two levels of analysis: a deep “knowledge structure” or “script,” that describes the typ-
ical aspects of visiting a restaurant; and a lower-level “conceptual dependency” structure, that
describes a series of individual relations and events.

The area of template-filling information extraction, typified by the Message Understanding
Conferences in the late 80’s and early 90’s, can be viewed as one practical realization of this idea.
In MUC data, newswire stories are annotated with one of several templates describing high-level
events and their properties; for example, one MUC corpus consists of news stories about terrorist

1

(a) Example from Schank and Abelson (1977) (b) Example template-filling for Message Understanding
Conference (MUC) data; from Chambers and Jurafsky
(2011).

(c) Two example frames (a.k.a. templates) learned in Cham-
bers and Jurafsky (2011). The names of frames and roles
were given manually by the researchers, but their noun
types, and the typical verbs they are arguments of, are
learned automatically from a raw unlabeled corpus.

2

activities in Latin America, with a number of templates for the high-level events such as “bomb-
ing,” “kidnapping,” etc.; see Figure 1b for an example. One possible application is structured
corpus summarization.

We pursue unsupervised learning to automatically induce frames from text, and to annotate
a given text with the frames that underlie it. Frame-like structured representations have been
proposed to model beliefs, opinions, worldviews, and many other aspects of knowledge, but we
focus on co-occurring events and actor roles, following on the work of Chambers and Jurafsky
(2011), which developed an unsupervised learning approach to induce MUC-style frames from
newspaper articles.1

Their results are very interesting (Figure 1c): they were able to reconstruct some of the hand-
built frames from the MUC dataset, and discovered several other ones as well. Their approach
consists of an ad-hoc cascade of several stages of clustering algorithms and many heuristic steps;
unfortunately, it is difficult to replicate, reason about, and extend.

We develop an alternative approach, within the framework of Bayesian generative statistical
models, to accomplish this task. By taking this approach, we can access a variety of (fairly) well-
understood statistical algorithms for learning and inference, and have principled methods to ex-
tend and modify the model to incorporate document metadata and other sources of information of
great interest for text analysis. We begin by describing previously existing models for documents
and syntactic tuples, then describe our approach, which builds on these previous advances.

3 Document-word mixture model: LDA

The well-known model of latent Dirichlet allocation (Blei et al., 2003) fits latent mixtures of words
over a corpus of documents. Documents are represented as a mixture of high-level topics, while
their words are generated by the topic-word distributions.

One possible hierarchical generative story for LDA is:

• Fix K number of topics, and priors α, β

• Topic lexicon: For each topic k = 1..K,

– Draw φk ∼ Dir(β)

• Document-word data: For each document d = 1..D,

– Draw θd ∼ Dir(α)

– For each word token i = 1..Nd,

∗ Draw zi ∼ θd
∗ Draw wi ∼ φzi

where

• V = the number of distinct words types under consideration, K = the fixed number of
topics, and D the number of documents in the corpus;

1 Note that in both Chambers and Jurafsky (2011), and the MUC approach in general, there is no temporal or causal
ordering to the fine-grained events in a single text; this contrasts with the usual notion of a script or narrative. In
this work, we stick to this atemporal, “co-occurring events and actors” view of a “script,” since it is simpler to model.
Therefore we use the term “frame” in the rest of the document to avoid confusion (though that term is ambiguous in
other previous literature).

3

• θd parameterizes a document’s discrete distribution over topics; i.e. θd ∈ Simplex(K).

• φk parameterizes a topic’s discrete distribution over words; i.e. φk ∈ Simplex(V).

An interesting way to think about LDA is to view the dataset as a giant list of (DocumentID,
WordID) pairs for every token: (di, wi) where i indexes across all tokens in the corpus.2 The
likelihood of all words (conditioning on the assignment of tokens to documents, which is taken as
fixed) is:

p(w|d) =
∏

i

p(wi|di) (1)

=
∏

i

∑

zi

p(wi|zi) p(zi|di) (2)

An effective approach to inference in LDA is collapsed Gibbs sampling (Griffiths and Steyvers
2004, Neal 1992), which only explores settings of the per-token latent variables z, “collapsing out”
the θ and φ multinomials by exploiting Dirichlet-multinomial conjugacy. The collapsed Gibbs
sampler holds a setting for all z variables, and sequentially updates one zi variable at a time, by
resampling according to its probability conditioning on all other variables:

p(zi | z−i, w, d;α, β) ∝ p(zi | z−i, d, α) p(wi | zi, w−i, β) (3)

where z−i and w−i denote all topic indicators and word tokens at all other positions besides
i. This approach also conditions on the Dirichlet document-topic and topic-word priors α and β
(but not θ or φ, which are implicitly integrated out).

Due to Dirichlet-multinomial conjugacy, the counts of documents, topics, and words are suffi-
cient statistics to represent the two probabilities above as:3

p(zi = k | z−i, w, d;α, β) ∝ C[k, di] + α

C[di] + α0

C[wi, k] + β

C[k] + β0
(4)

where C represents a count over all token positions except for i: C[k, di] denotes the count of how
many tokens in the document have topic assignment k, C[d] is how many tokens the document
contains, C[k] is how many tokens are assigned to topic k across the whole corpus, and C[wi, k] is
how many tokens under topic k are the word wi. These are just marginal counts of the token-level
triples (d, z, w).

[And: α0 = Kα, β0 = V β; they are the concentration parameters associated with these sym-
metric Dirichlet priors. For implementation, (C[di] + α0) can be omitted since it is invariant in
k.]

This gives a clear interpretation to the probability of assigning zi to topic k: the left term favors
topics that are already prevalent within the document, while the right term favors topics for which
that word is common. (The constraints are probabilistic and mediated by Bayes rule.) They might
be called document-topic and topic-lexical coherency constraints, since they tend to favor a spe-
cific (soft) set of topics for one document, and a specific (soft) set of words for one topic; and they
correspond to the two factors in a factor graph view of the probabilistic model that we illustrate
in Figure 1.

The collapsed Gibbs sampling algorithm explores the posterior by taking multiple iterations
through the data, updating the zi variables in turn, while maintaining the necessary marginal
count tables. The factors in the Figure 1 diagram correspond to the highest-dimension count tables
that are necessary to maintain. We will use this simple inference framework for all our models.

2Asuncion et al. (2009) and Hoffman (1999) take this view.
3Details in section 9.

4

zd w Document-Word LDA

zd w

a Document-Tuple (Model 1)

z w

a Tuple-only (Rooth-style) model

zd r

a

w

Document-Tuple-Role (Model 2)

z w(s)

w(v)

w(o)
p(z | w, a) ∝ p(z)

�

a

p(w(a) | z, a)

p(z | d, w) ∝ p(z | d) p(w | z)

p(z | d, w, a) ∝ p(z | d)
�

a

p(w(a) | z, a)

p(z | d, r, a) ∝ p(z | d)
�

a

p(r(a) | z, a)

p(r(a) | z, w(a), a) ∝ p(r(a) | z, a) p(w(a) | r(a))

zd r

a

w

y

Metadata extension (PLDA) (Model 3)

p(z | d, yd, r, a) ∝ p(z | d, yd)
�

a

p(r(a) | z, a)

Figure 1: Factor diagrams for the described models, along with their respective the Gibbs update
conditional factorizations for their latent variables. Latent variables are blue; the rest are observed.
A factor graph is formally defined as a bipartite graph between variables and factors; a factor is
visually represented here as a shape surrounding the variables it implicates. These diagrams only
show the discrete variables in the models; their Dirichlet-multinomial priors are not shown.

5

4 Semantic tuple mixture models

Using LDA to model the bag-of-words in a document can recover impressive topical clusters of
words, but our goal is to retrieve deeper frames involving systems of typical events and relation-
ships between actors in a text. The key information is relational, and language encodes predicate-
argument relationships in abundance—at the most basic level, as verbs and their arguments. Verbs
often encode events or actions, while nouns usually encode entities. When a sentence expresses a
tuple of (verb, subject, object), this often encodes an action (verb) performed by an agent (subject),
upon or with the object. Teasing apart these relationships is complicated, and extracting more gen-
eral forms of the roles from text is its own subproblem in natural language processing (semantic
role labeling (TODO CITE)); but focusing on verbs, subjects, and objects is sufficient to get started
in modeling script-like frames; indeed, this is the focus of the Chambers and Jurafsky work.

There exists a line of work on modeling verb-argument tuples, usually under the guise of
learning selectional restrictions, which means the typical classes of arguments for a verb. For ex-
ample, “The man bit the dog” is unnatural because the subject and object arguments of the verb
bite tend to take different classes of noun arguments than are used here. This line of work always
focuses on modeling (verb, noun) tuples individually—often extracted from a large corpus with a
syntactic parse, as a preprocessing step—without considering document context.

Looking just at work that uses generative clustering approaches, Rooth et al (1999) and Pereira
et al (1993) propose a simple class-based model where (verb, object) pair belongs to a particular
class, and each class has separate verb and object word distributions. Rooth illustrates the model
learns broad classes of verbs; for example, one learned class has its most probable verbs as increase
as, fall, pay, reduce, rise while the the most probable objects are number, rate, price, cost, level; they
interpret this class as “scalar change.”

We can generalize the Rooth model to (verb, subject, object) triples, and add some Dirichlet
priors, as follows. φ(arg)k denotes a word multinomial for argument type arg and class k; and there
are three argument types (verb, subject, object), treated completely separately.

• Frame lexicon: For each k = 1..K, sample three word multinomials: φ(v)k , φ
(s)
k , φ

(o)
k ∼ Dir(β)

• Tuple data: For each tuple i = 1..N ,

– Draw its class indicator zi (from a fixed prior),

– Draw the three words from their repsective multinomials: w(v)
i ∼ φ

(v)
zi ; w

(s)
i ∼ φ

(s)
zi ; w

(o)
i ∼

φ
(s)
zi

A factor diagram is shown in Figure ??. This approach models every tuple independently, with
no document or other context; the only thing shared across tuples are the per-class argument
word distributions. More recent work extends Rooth to model other syntactic relation pairs
(O’Seaghdha 2010) and web-extracted triple relations (Ritter and Etzioni 2010). The Bayesian
framework makes it easy to explore many variants; we illustrate several of these proposed models
in Figure 2.

There is still more previous work, including Grenager and Manning (2006) and Titov and
Klementiev (2011) which use a broadly similar Bayesian mixture modeling approaches to clus-
ter syntactic relations and classes for verb arguments and other syntactic dependencies, arguing
this recovers deeper semantic categories of verbs and other relationships. Lang and Lapata (2010)
introduce a latent logistic regression model for argument structure.

6

#Pairs

φ(n)
z

φ(v)
z

w(v)

w(n)

z

#Pairs

zrel

θrel

w(n)

w(v) φ(v)
z

φ(n)
z

Rooth 1999

O'Seaghdha 2010, 3.3

#Pairs

z w(n)w(v) φ(n)
z

O'Seaghdha 2010, 3.2

θw(v)

#Pairs

rel

w(n)

w(v)

φ(n)
z

O'Seaghdha 2010, 3.4

ηrel

c φ(v)
c

z

θc

#Triples

zw(v)

θw(v)

w(s) φ(s)
z

w(o) φ(o)
z

Ritter 2010, JointLDA

#Triples
z

w(v)

θw(v)

w(s) φ(s)
z

w(o) φ(o)
z

z

Ritter 2010, LinkLDA

w(v)
w(s)

w(o)
z

w(v)
w(s)

w(o)

z

z

Ritter 2010, JointLDA

Ritter 2010, LinkLDA

c

z w(n)

w(v)

O'Seaghdha 2010, §3.4

w(v) w(n)z

O'Seaghdha 2010, §3.2

rel

Figure 2: Several relational tuple models proposed in previous work. Double-border variables
are observed. Multinomials are shown but Dirichlet priors omitted. The unified notation neces-
sarily conflates distinctions between the authors; for example, Ritter models with web-extracted
semantic tuples, not syntactic V-S-O tuples.

5 Mixture models of documents, tuples, and roles

We present a succession of three models to capture aspects of unsupervised learning of frames.
Initially, we preprocess a corpus of documents into syntactic (verb, subject, object) tuples using a
syntactic parser,4 yielding a dataset of tuples (d,w(v), w(s), w(o))i=1..N . Our models are fit to this
data.

Figure 3 illustrates the models in probabilistic DAG notation (Koller and Friedman 2010, Bishop
2006); see also the factor graph diagrams in Figure 1.

5.1 Model 1: Document-Tuple

First, we extend the Rooth independent tuple model to incorporate document context, by giv-
ing tuples within the same document a shared multinomial prior over classes. This amounts to
modifying LDA to replace its word generation process with a V-S-O tuple generation process.

For clarity, we notate the three verb, subject, and object syntactic argument positions with
integers 1, 2, 3, and within a tuple reference them with an observed variable a ∈ {1, 2, 3}. We also
now call the latent variables “frames.” The generative process is:

4 Stanford Parser and Dependencies: http://nlp.stanford.edu/software/ (Klein and Manning 2003,
de Marneffe et al 2006)

7

http://nlp.stanford.edu/software/

#Docs
#Tokens

#Docs

#Tuples
#Args

#Tuples

z

w(v)

w(s)

w(o)

φ(v)
z

φ(s)
z

φ(o)
z

z

a

w φ(a)
z

#Tuples
#Args

z

a

w φ(a)
z

θd

wzθd

Tuple-only (Rooth-style) model

Document-Word LDA

Model 1: Document-Tuple

Alternate notation for the tuple-only model

φz

#Docs
#Tuples

#Args

z

a

wθd

Model 2: Document-Tuple-Role

φrr

Lz,a

#Docs
#Tuples

#Args

z

a

wθd

Model 3: Metadata-frame constraints (PLDA)

φrr

Lz,a

y

M

Figure 3: Probabilistic DAG notation for our models and related models. Double-border variables
are observed. Dirichlet priors α, β (and for Model 2, γ) are omitted, but all multinomials are
shown. Compare to factor diagrams in Figure 1.

8

• Fix K frames, and Dirichlet priors α, β

• Frame lexicon: For each frame k ∈ 1..K, and argument position a ∈ {1, 2, 3},

– Draw word multinomial φ(a)k ∼ Dir(β)

• Document-tuple data: For each document d ∈ 1..D,

– Draw frame multinomial θd ∼ Dir(α)

– For each tuple i in the document,

∗ Draw frame indicator zi ∼ θd
∗ Draw word triple: for each argument position a ∈ {1, 2, 3},
· Draw w

(a)
i ∼ φ

(a)
zi

The per-document prior has the effect of balancing between tuple coherency and document
coherency. The Gibbs update step is to sample from the conditional distribution

p(zi | w, z−i, d, α, β) ∝ p(zi|d, α) p(w(v)|zi, β)p(w(s)|zi, β)p(w(o)|zi, β) (5)

where, as in LDA,

p(zi|d, α) =
C[zi, d] + α

C[d] + α0

(though the count is over tuples, not word tokens.)
As α increases, the p(zi|d) term is encouraged to be more and more uniform, and thus have

less of an impact on q(zi); it collapses into the Rooth tuple independence model for α → ∞. For
a moderate value of α, the model encourages tuples in the same document to share the same
class. We hypothesize this will encourage the classes to be not just about linguistic argument
categories (as previous tuple modeling work has attempted to model), but also capture related
types of events and actions in the corpus, in the same way that LDA on individual words can
capture topical themes.

5.2 Model 2: Document-Tuple-Role

In Model 1, every class or “frame” has completely independent word distributions for the argu-
ment positions. But ideally, we would like higher level roles that summarize word distributions
but cut across the particular types of events. For example, in the domain of crime stories, we might
want to learn roles for POLICE, CRIMINAL, and CRIME and know that typical events might include
[v=ARREST, s=POLICE, o=CRIMINAL] and [v=COMMIT, s=CRIMINAL, o=CRIME]; those roles might
be typically instantiated by words such as police, cops, authorities for POLICE, or perpetrator, attacker,
thief for CRIMINAL, etc.

We seek to accomplish this by introducing latent role variables. Every role associates with a
word multinomial — a “role-filler” distribution — while each frame tends to see certain roles in
different argument positions (the “linker” distribution). The roles intermediate between frames
and words, allowing cross-cutting roles across frames.

The generative process for Model 2 is:

• Fix R roles, K frames, and Dirichlet priors α, β, γ

• Frame lexicon:

9

– For each role r ∈ 1..R,

∗ Draw word multinomial φr ∼ Dir(β)

– For each frame k ∈ 1..K, and argument position a ∈ {1, 2, 3},
∗ Draw the “linker” Lk,a ∼ Dir(γ), a multinomial over roles: Lk,a ∈ Simplex(R).

• Document-tuple data:

– For each document d ∈ 1..D, draw frame multinomial θd ∼ Dir(α)

– For each tuple i for document d,

∗ Draw frame indicator zi ∼ θd
∗ Draw word triple: for each argument a ∈ {1, 2, 3},
· (if a is not present in this tuple, skip)
· Draw role r(a) ∈ Lzi,a
· Draw word w(a) ∈ φr(a)

(We have slightly different handling of NONE values than in Model 1: they are skipped and not
modeled at all. If they are explicitly modeled, they take a very large proportion of the probability
mass in the role-word distributions, making the results harder to interpret.)

We use a Gibbs sampler that computes updates separately for frame and role variables:

p(zi | d, z−i, r, a;α, γ) ∝ p(zi | d, z−i, α)
∏

a

p(r(a) | zi, a, γ) (6)

=
#T [zi, d] + α

#T [d] + α0

∏

a

#W [r(a), zi, a] + γ

#W [zi, a] + γ0
(7)

p(r(a) | z, w(a), a; γ, β) ∝ p(r(a) | z, a, γ)p(w(a) | r(a), β) (8)

=
#W [r(a), zi, a] + γ

#W [zi, a] + γ0

#W [w(a), r(a)] + β

#W [r(a)] + β0
(9)

where #T denotes a count over tuples (excluding tuple i), and #W denotes a count over word
tokens; in the first equation, it excludes counts from the three words at tuple i; in the second
equation, it excludes the word at position a in tuple i.

The algorithm we use is, for one pass through the data: For each tuple i, (1) update zi, then (2)
for a = 1..3, update r(a).

Mixing is substantially slower for Model 2 than Model 1, probably due to the strong depen-
dency between the frame and word roles at a single tuple. It may be important in the future to
investigate alternative inference procedures that can make larger moves, such as the split-merge
sampler (Jain and Neal 2004).

[BTO: TODO figure out if/how Model 2 is related to the chinese restaurant franchise view of
the HDP]

5.3 Model 3: Metadata-Frame associations

Many corpora of analytic interest have some form of observed document labels, such as the doc-
ument’s author, year of publication, gender of the author, political slant of the publication, etc.
Corpus analysis usually involves associating document labels with text (e.g. topical trends over
time, difference of writing styles between genders, etc.) The framework of Partially Labeled LDA

10

(Ramage et al., 2011) learns to associate latent topics with these observed data through a very sim-
ple mechanism of constraining certain topics to only appear in documents having certain labels.
We can easily extend it to our frame models.

PLDA assumes there are J possible binary labels; any set of them may be on for a particular
document, described by binary vector y(d) ∈ {0, 1}J . Every label is globally fixed to be associated
with a particular subset of topics. A document’s topics are constrained to only include ones that
are allowed by the label-topic associations.

LetM ∈ {0, 1}J×K be a binary matrix describing the label-topic associations, such thatMjk = 1
means that a document with label j is allowed to use topic k. For example, say J = 3,K = 9 and

M =




1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1




indicating that y1 associates with the first 5 topics, while y2 and y3 associate with two topics each.
Say that y1 is a “background” label always on for all documents, while y2 and y3 indicate whether
the author is male or female, respectively. Then a male author can draw from topics {1..7}, while
a female author can draw from topics {1..5} ∪ {8, 9}.

The only change to document generation is to sample the document-topic multinomial θ(d) ∈
RK from a masked prior vector α(d) ∈ RK , which is zeroed out where the document labels forbid
it. For document d, having an observed binary label vector y(d),

• Let α(d) be such that α(d)
k = α if Mjk = 1 for any j having y(d)j = 1; otherwise α(d)

k = 0.

• Draw θ(d) ∼ Dir(α(d))

If the rows of M are mutually exclusive—i.e. every label’s topic set doesn’t overlap with any
others—the masking operation is equivalent to a matrix multiply α(d) = (y(d))TM . (This suggests
a connection between PLDA and the Dirichlet-multinomial regression topic model (Mimno and
McCallum, 2008).)

The collapsed Gibbs sampler is trivially easy to implement for PLDA since conjugacy is pre-
served; one simply zeroes out the disallowed topics when building the conditional Gibbs sampling
distribution for zi. This makes it easy to add PLDA to either Model 1 or Model 2, to associate
frames with document characteristics.

A weakness of PLDA is that the label-topic architecture, represented in M , has to be specified
in advance. This can be complicated to tune. Ramage et al. used a setup of several background
topics, and a fixed number of topics each for each label, with each labels’ topics exclusive. An
interesting extension for future work is to use a Dirichlet process prior to automatically choose the
number of topics each label is associated with (also examined by Ramage et al.).

5.4 Posterior inference for hyperparameters

For exposition, we have indicated the Dirichlet priors α, β, γ are fixed. Specifying them manually
is, to a certain extent, useful, since they control the degree of sparsity observed in the posteriors—
for example, a small α will tend to decrease the number of topics used in a document. But it is
possible to fit them to the data as well, to either maximize likelihood (Wallach 2009, Asuncion
2009, Minka 2009) or compute a posterior over them (Johnson 2008, TODO find others); these
authors have found that either of these approaches tends to improve model fits.

11

During inference, we sample these Dirichlet concentration parameters through slice sampling
(Neal 2003),5 an MCMC method for continuous variables that, like Metropolis-Hastings, allows
one to sample from a complicated distribution that can only be evaluated at individual points. But
unlike Metropolis-Hastings, it requires no proposal distribution, and very little width tuning, as
it adaptively learns a step size.

We interleave the core z and r Gibbs update iterations with hyperparameter Gibbs update
steps, using the unnormalied posteriors. For Models 1 and 2, the α update is through:

p(α | z) = p(α)
∏

d

p(z{i: di=d} | α)

where p(α) is assigned to be a vague prior, and the document likelihood term p(z{i: di=d} | α) is
the “single-path” Dirichlet-compound multinomial, derived in Section 9. Update steps for β and
γ are analogous. For the prior p(α), many authors use a vague Gamma prior that is relatively
flat across all positive reals; but we found success with the even simpler approach of having no
prior and only using the likelihood term as the unnormalized posterior; this corresponds to an
improper uniform prior having constant density on R. See section 6.5 for details and discussion.

6 Experiments

6.1 Dataset

We have implemented models 1 and 2 and experimented fitting them on the news articles from
the LDC New York Times Annotated Corpus (Sandhaus, 2008). This corpus is useful because
news text is relatively easy for current syntactic parsers to analyze, and the articles have been
extensively categorized by hand—every article has a number of descriptor labels. This makes it
easier to extract subsets that are targeted towards specific topics, making the models’ output easier
to interpret. Also, the labels can be used to experiment with Model 3.

Inspired by examples of narrative event structures in the domain of crime reporting (Chambers
and Jurafsky 2009), and examples in earlier work on scripts (DeJong 1982), we select news articles
for which any of their category labels contain any of the words crime, crimes, or criminal. This
yields 53,182 articles. We show the most common matching labels, and a sampling of headlines,
in Table 2.

We have been using this dataset, and a smaller development subset of it (2,602 articles) for
initial experiments. Unfortunately, upon further review, there seem to be a number of data quality
issues with the metadata—in particular, there are two different system of categories, from different
groups within the New York Times, and one of them seems to have generally higher quality labels;
for example, they disagree whether “Crime and Criminals” applies to international terrorism or
not, or stories about 9/11 memorials, etc. When extracting this particualr dataset, we collapsed
together all categories, but for future experiments with the corpus, this and other metadata quality
issues may require further consideration.

6.2 Parse preprocessing

All linguistic analysis is performed as a preprocessing step, by running the Stanford CoreNLP sys-
tem,6 which performs sentence segmentation, part-of-speech and named entity tagging, syntactic

5 Using an adaptation of Iain Murray’s implementation: http://homepages.inf.ed.ac.uk/imurray2/
teaching/09mlss/slice_sample.m

6http://nlp.stanford.edu/software/corenlp.shtml

12

http://homepages.inf.ed.ac.uk/imurray2/teaching/09mlss/slice_sample.m
http://homepages.inf.ed.ac.uk/imurray2/teaching/09mlss/slice_sample.m
http://nlp.stanford.edu/software/corenlp.shtml

count category label
48,645 crime and criminals
9,497 sex crimes
6,304 sentences (criminal)
3,892 war crimes, genocide and crimes against humanity
2,818 organized crime

Table 1: Most common category labels matching query
1987-05-05 JURY SELECTION MAJOR HURDLE IN TRIAL THAT MAY LAST YEARS
1988-02-25 Moslem Patrol Helps Cut Crime in Brooklyn
1991-10-22 GUILTY PLEAS SET IN U.S. COAL CASE
2001-05-30 4 GUILTY IN TERROR BOMBINGS OF 2 U.S. EMBASSIES IN AFRICA;

JURY TO WEIGH 2 EXECUTIONS
2001-10-17 A Rush for Cipro, and the Global Ripples
2003-08-09 World Briefing — Europe: Northern Ireland: Fund For Bomb Lawsuits
2003-10-03 Bryant’s Accuser Won’t Have to Testify
2004-07-18 Despite Appeals, Chaos Still Stalks the Sudanese
2005-04-01 World Briefing — Europe: France: Longer Prison Term In Graft Case

Table 2: Sample of headlines from the dataset.

parsing (Klein and Manning 2003) and conversion to dependencies (de Marneffe et al 2006). A
dependency parse explicitly represents syntactic relations between words, including the subject
and object relationships between a verb and its arguments. We extract (verb, subject, object) tu-
ples from wherever there is a verb that has at least one subject or object; if either is missing (e.g. an
intransitive verb, or implied arguments), the word is assigned a placeholder “NONE” symbol. We
use the Stanford Dependencies’ nominative subject and direct object relations for this (nsubj and
dobj).

We selected a random sample of extracted V-S-O tuples to manually assess for accuracy. A
subset are shown in Table 3. We annotated 40 tuples, in context in their respective sentences,
consulting the Stanford Dependency papers (de Marneffe et al 2006, 2008), which have clear lin-
guistic definitions of the grammatical relations, their conventions for analyzing compound verbs,
etc. Out of 40 tuples, we found 30 had the subject and/or object arguments correct; 6 had one or
both wrong; and 4 were incomplete (missing either subject or object)—75% precision. We were
somewhat surprised to see that most tuples are incomplete. Complete V-S-O tuples make up only
18.8% of the tuples, while 43% are (V,S,NONE) and 38% are (V,NONE,O).

Finally, we use a vocabulary cutoff to aid efficiency, limiting to the 10,000 most common words
across all V-S-O positions. Words that fall below the threshold are replaced with an “OOV” sym-
bol. We use the lemmatized (stemmed) forms of words, as analyzed by the parser. Unlike stan-
dard topic models, we do not need to remove stopwords, since this is built-in to the grammatical
analysis: the verb-subject and verb-object relations exist directly between content words.

We ran CoreNLP on the 53,182 input articles; 52,254 were processed without error or the soft-
ware crashing, yielding 2.6 million V-S-O tuples.

6.3 Model fitting

For both Model 1 and 2, we initialize latent variables to random values, then run the Gibbs sampler
as described in Section 5. Two Gibbs sampling runs are shown for Model 1, on the small and large

13

correct? text and V-S-O tuple

RIGHT: for “workers,” only
use single head word of the
noun phrase

In less than an hour , the police and rescue unit (
workers)subj [found]verb the (organ)obj in the tall
grass of the field , packed it in ice and took it to the
hospital .

RIGHT
Mrs. (Bissell)subj , she said , never [learned]verb
what her husband did with the money .

INCOMPLETE: “he” should be
subject of “defrauded” since
SD uses content verb as head

Asked why he had [defrauded]verb the insurance (
company)obj and been partners with the mob . . .

WRONG: lists are a known
problem case for current
parsers

Guilty on Five Charges Mr. Garcia was found guilty
on all five charges against him : (theft)subj of heroin
, possession with intent to [distribute]verb heroin ,
narcotics conspiracy and two (counts)obj of money
laundering .

Table 3: Example extracted tuples and our annotations in their original sentences (in tokenized
form).

datasets with K = 100 frames in both cases. α is resampled, but β is fixed for efficiency reasons.
(It is fixed to β = 100, approximately a value resulting from preliminary experiments when it was
resampled.) We show trace plots for the sampling runs in Figure 7. It is notoriously difficult to
assess MCMC convergence but we attempt some analysis.

Log-likelihood should increase as the Gibbs sampler moves towards a high-density posterior
region; ideally, it should then mix, exploring the posterior. For the small dataset, it is possible to
run 5000 iterations within several hours,7 but unfortunately, it does not seem that log-likelihood
has yet leveled off (especially when we view just the last 200 iterations). (On an even smaller
dataset, also shown, it may have leveled off after 5000 iterations.) On the full dataset, 1000 itera-
tions takes even longer (about 10 hours), and is quite far from convergence.

It should be noted that, even if the log-likelihood levels off, that does not guarantee the MCMC
chain is actually mixing—it could be stuck in a local mode. To properly assess convergence, it is
recommended to trace the movement of particular parameters over time. Unfortunately, in a
mixture model the components have identifiability issues, since swapping their labels yields an
equivalent likelihood solution; this makes it difficult to interpret movements in individual topic-
word or document-topic distributions difficult.

This is disappointing; what is really going on is the Gibbs sampler is acting as an optimizer; if
we stop it early, it is simply an incomplete optimizer. There is a strange phenonenon in the liter-
ature that uses Gibbs sampling for topic models: the algorithm is justified on theoretical MCMC
grounds of exploring the posterior distribution; but in practice, since the dimensionality is so high,
everyone uses it as a stochastic optimizing “mode-finder” that then infers a small piece of the pos-
terior distribution around that mode. Our use of Gibbs sampling largely follows these lines, and
suggests that variational or other approaches to inference may be useful.

Final note: as a supplement to log-likelihood, we experimented with tracking the number
of changes to z variables during each iteration—a very simple measure of how much the Gibbs
sampler is moving, which we might expect to be higher when it is in a low density region and
“trying” to get out. This simple count is computationally attractive because it is substantially

7Implementation in C/Python.

14

faster to compute than the likelihood; we compute it every iteration. In early iterations, it rapidly
decreases as likelihood is rapidly increasing, though by later iterations it is less clear. Over the
iteations where we measure log-likelihood, its correlation with the number of changes is −0.94
(and about the same for log(number of changes)).

6.4 Effects of changing Dirichlet concentration paramters

TODO explain (1) 99% mass statistics for Dirichlet sparsity analysis, (2) simulation results, (3) em-
pirical results on changing alpha on Model 1. Explain (concentration,mean) view of Dirichlets.
Evidence that we are seeing the asymptotic convergence to Dirichlet process under fixed concen-
tration paramter. (Is it Wallach 2009 that mentions this as well; high K, low α approximation of
DP?) Explain (derive?) relationship of my “top-99% mass” statistic to asymptotic CRP theory of
O(α logN) non-empty tables.

With the more complicated models, having several concentration paraemters, it becomes too
difficult to tune all of them. This motivated the implementation of posterior sampling of the
concentration parameters.

6.5 Slice sampling Dirichlet concentration parameters

This approach is described in section 5.4. We experimented with several approaches to scheduling
the hyperparameter updates, since they are fairly expensive. In order to best increase overall like-
lihood over time, it seemed most useful to a “token burn-in” period at the start, leaving the hyper-
parameters at fixed values then having about 100 iterations of z and r Gibbs sampling iterations;
this allows the model to learn reasonable frame distributions, which is the highest dimensional
part of the model. Then we perform hyperparameter resampling every 50 iterations. It turns out
this strategy is similar to the one implemented in the MALLET toolkit.8

For each hyperparameter, we run the slice sampler for 10 iterations, then take the last value
of the parameter as a sample from its posterior. (Johnson 2008 uses 20, and Mallet uses [BTO:
TODO check] by default.) To choose the number 10, we performed a simulation experiment,
generating 500 artificial Dirichlet-multinomial datasets, and ran a slice sampler on each, assessing
convergence of the distribution across chains to the true distribution. Figure 8 shows, for each
iteration, the distribution of the 500 chains’ states against the true posterior, as calculated with a
grid approximation on the DCM likelihood. (This experiment was inspired by Cook et al. (2006)’s
simulation testing technique for posterior inference.) [BTO: TODO redo and report parameter
details. or better yet, run it on a real z sample]

The hyperparameter sampling substantially improves likelihood, as noted in previous work.
Interestingly, most of the movement tends to happen early in the MCMC chain, then the hyperpa-
rameter stabilizes as the rest of the model is still moving. We checked if the outcome was initializer
dependent by starting three different MCMC chains that were identical except for three different
α initializers. Reassuringly, they all converged on the same region of values. This robustness to
initialization was exactly what we wanted.

15

verbs subjects objects
serve, receive, give, impose,
face, appeal, spend, seek, get,
reduce

NONE(0.69), judge, OOV,
sentence, defendant, court,
prosecutor, man, jury, of-
fender

sentence, term, year,
NONE(0.03), time, penalty,
probation, conviction, month,
fine

OOV, rule, agree, argue, have,
require, apply, refuse, hold,
come

Court, court, judge, OOV,
lawyer, law, case, decision,
state, prosecutor

NONE(0.94), OOV, judge, re-
quest, time, case, court, hear-
ing, defendant, decision

sell, use, buy, possess, dis-
tribute, fight, take, deal, get,
carry

NONE(0.85), dealer, police,
mother, percent, teen-ager,
friend, OOV, people, Barry

drug, cocaine, crack, OOV,
heroin, car, worth, marijuana,
gas, food

make, approve, announce, in-
crease, finance, have, pro-
pose, support, expand, raise

NONE(0.73), city, official,
plan, Dinkins, Council,
Mayor, Koch, administration,
budget

plan, program, proposal, tax,
force, budget, system, OOV,
increase, NONE(0.01)

Table 4: Example output from Model 1. Four of 234 frames are shown; the ten most probable
words are shown for each slot type. The top ten words take up 30% to 95% of the probability mass
of the distribution, for these examples.

7 Results

7.1 Frame lexicons

Several frames from Model 1 are shown in Table 5. Several interesting classes of actions are ex-
tracted.

[BTO: TODO: analyze indpendent-tuple versus tuple-in-document. (α = ∞ versus slice-
sampled α). Is it more linguistic? Also, is there a good way to fairly compare topics between
models? greedy 1-1 matching then qualitatively analyze the top-5 pairs?]

Model 2 extracts both role-word distributions, and frames with their frame-argument-role dis-
tributions. Unlike Model 1, it has two tuning parameters: K, the number of frames, and R, the
number of roles. Inference is also slower. After experimenting with various settings, we found
that K = 10, R = 100 gave reasonable results: the number of roles was large enough to give in-
teresting word clusters, but unfortunately, the frames are less intelligible. We would like to have
a large number for both K and R, but unfortunately, inference is even slower; after 30 hours of
runtime K = 10, R = 100 seem to only be starting to mix (Figure ??), but K = 100, R = 100 is
much worse.

We show a Model 2 posterior in Figure 11. The role-frame matrix shows the counts that implic-
itly parameterize the linkerLz,a multinomials: the three-dimensional count tableC[frame, arg, role].
One row is a role. The top words in its multinomial are shown. Then for each frame, there are
counts over the different argument positions it can appear in. The model naturally segregates
verb-only roles from noun roles (since it is relatively rare for the same lemmatized word to be
both a noun and a verb). Furthermore, it learns a sparse set of frame-role linking multinomials—
the 0’s in this matrix. The sparsity is controlled by the linker’s Dirichlet parameter gamma, which
is being resampled here. We show an interesting noun role, that appears in multiple frames, and

8http://mallet.cs.umass.edu/

16

http://mallet.cs.umass.edu/

verbs subjects objects
serve, receive, give, impose,
face, appeal, spend, seek, get,
reduce

NONE(0.69), judge, OOV,
sentence, defendant, court,
prosecutor, man, jury, of-
fender

sentence, term, year,
NONE(0.03), time, penalty,
probation, conviction, month,
fine

OOV, rule, agree, argue, have,
require, apply, refuse, hold,
come

Court, court, judge, OOV,
lawyer, law, case, decision,
state, prosecutor

NONE(0.94), OOV, judge, re-
quest, time, case, court, hear-
ing, defendant, decision

sell, use, buy, possess, dis-
tribute, fight, take, deal, get,
carry

NONE(0.85), dealer, police,
mother, percent, teen-ager,
friend, OOV, people, Barry

drug, cocaine, crack, OOV,
heroin, car, worth, marijuana,
gas, food

make, approve, announce, in-
crease, finance, have, pro-
pose, support, expand, raise

NONE(0.73), city, official,
plan, Dinkins, Council,
Mayor, Koch, administration,
budget

plan, program, proposal, tax,
force, budget, system, OOV,
increase, NONE(0.01)

Table 5: Example output from Model 1. Four of 234 frames are shown; the ten most probable
words are shown for each slot type. The top ten words take up 30% to 95% of the probability mass
of the distribution, for these examples.

in different ways—in frame 0 it is usually the subject, but in frames 2 and 3 it is more often the
object.

[BTO: Still want to try PLDA if there’s time, but is lower priority than getting the role model
to work.]

7.2 Evaluation

[BTO: TODO: try to evaluate against PropBank, MUC, and/or VerbNet/FrameNet.]
[BTO: Idea: we hypothesize that the lexicons based in linguistic theory (PropBank, VerbNet,

FrameNet) differ from information extraction datasets (MUC, ACE, Freitag Acquisitions. . .) in
terms of domain specificity. We propose this can be tested through the α concentration parameter:
if document context doesn’t matter and we collpase into a Rooth-like sea-of-tuples model, every-
thing becomes purely syntactic linguistics, so the model should be more like Propbank. But with
stronger document-level constraints, the model becomes more like a topic model, and can learn
specifics about the domain. Maybe.]

8 Conclusion

[BTO: Obvious TODO: write a conclusion]

9 Appendix: Dirichlet-multinomial conjugacy and the DCM

Consider the two-stage model

θ ∼ Dir(α), x ∼Multinom(θ)

17

where α is a real-valued vector Dirichlet parameter, and x is a vector of outcome counts. Let
A =

∑
k αk; this is the concentration parameter.

p(x|α) =
∫
p(x|θ)p(θ|α)dθ is the Dirichlet Compound Multinomial, a.k.a. Multivariate Polya

distribution. It is a distribution over count vectors, just like the multinomial, except it has the
capacity to prefer different levels of sparseness vs. non-sparseness.

First note the Dirichlet density

p(θ|α) =
ΓA∏
Γαk

∏
θαk−1
k =

1

B(α)

∏
θαk−1
k (10)

where B(α) is the multivariate Beta function

B(α) =

∫ ∏
θαk−1
k dθ =

∏
Γαk

ΓA

Now derive the DCM PMF:

p(x|α) =

∫
p(x|θ) p(θ|α) dθ (11)

=

∫
Multinom(x; θ) Dir(θ;α) dθ (12)

=

∫ (
N !∏
xk!

∏
θxkk

)(
1

B(α)

∏
θαk−1
k

)
dθ (13)

Because of conjugacy (i.e., the densities play nicely under multiplication), we can combine them
into the integral of a new unnormalized Dirichlet, and rewrite into closed form.

p(x|α) =
N !∏
xk!

1

B(α)

∫ ∏
θxk+αk−1
k dθ (14)

=
N !∏
xk!

B(α+ x)

B(α)
(15)

DCM(x;α) ≡ N !∏
xk!

Γ(A)

Γ(A+N)

∏ Γ(αk + xk)

Γ(αk)
(16)

(n. seq) (prob of a seq having counts ~x) (17)

where A =
∑
αk and N =

∑
xk. To calculate this, one would rewrite the “number of sequences

term” using N ! = Γ(N + 1) and xk! = Γ(xk + 1) then use the log-gamma function for everything.
To calculate the log-probability of only a single sequence, omit the initial term N !/

∏
xk!; we call

this a “single path DCM” or “DCM1”:

DCM1(x;α) =
Γ(A)

Γ(A+N)

∏ Γ(αk + xk)

Γ(αk)
(18)

Note the DCM gives, for small α priors, a bowed-out preference to count vectors that lie on the
extremes of the N -simplex—just like the Dirichlet with small α prefers bowed-out points on the
1-simplex. This can be seen as a preference for “bursty” behavior. A multinomial cannot do this:
you only can specify the mean, then the variance is fixed. In the DCM, you control both mean and
variance (≈ inverse concentration), allowing burstiness a.k.a. over/under-dispersion.

18

For a single DCM draw whereN = 1, instead of representing the draw as a sparse count vector
x, we can represent it instead as an integer ID, z ∈ {1..K}. In the PMF, all the combinatorics drop
away, leaving:

DCM(z;α) =
αz
A

which is simply the Dirichlet mean parameter. When there’s only one draw there’s no such thing
as burstiness or not.

It is also easy to derive the posterior predictive distribution for a Dirichlet-Multinomial hierar-
chical model. We want to know the probability of the next draw z given the previous draws z−i,
using our entire posterior beliefs about θ. Represent z−i as count vector ~n = (n1..nK):

p(z|z−i, ~α) =

∫
p(z|θ) p(θ|z−i, α) dθ (19)

=

∫
Multinom(z; θ) Dir(θ; ~α+ ~n) dθ (20)

The second step used Dirichlet-multinomial conjugacy. Now this is just the 1-draw DCM (i.e. the
mean of the conjugately-updated Dirichlet),

p(z|z−i, ~α) = DCM(z; ~α+ ~n) (21)

=
αz + nz
A+N

(22)

9.1 DCM PMF in LDA hyperparameter sampling

Going through the full DCM is not necessary to derive the collapsed Gibbs sampling equations,
but it is necessary for hyperparameter sampling, which requires evaluating the likelihood of the
entire dataset under different hyperparamters α. LDA under collapsing can be viewed as a series
of DCM draws:

• For each d, sample vector z{i: di=d} ∼ DCMPath(α)

• For each k, sample vector w{i: zi=k} ∼ DCMPath(β)

where “DCMPath” indicates choosing one random sequence having the counts of one DCM draw.
(This could be computed by proceeding through a Polya urn process a.k.a. (finite) Chinese restau-
rant process.) Therefore, for their Gibbs update steps, the hyperparameter likelihoods are:

p(z | α) =
∏

d

DCM1(z{i: di=d};α) (23)

p(w | z, β) =
∏

k

DCM1(w{i: zi=k};β) (24)

For the other models, analogous formulations are available as well. We were initially tempted to
try to compute the likehoods with per-token local conditionals similar to what is used for the z
Gibbs updates, ∏

i

p(wi|zi, β) p(zi|z−i;α)

19

which is easy to compute, but unfortunately wrong: it is actually a pseudolikelihood approxima-
tion to the likelihood (Besag 1975). Since it is possible to compute the actual likelihood closed-form
log-gammas, we do so.

However, it does turn out the running-sum pseudolikelihood is a good approximation, as
shown in Figure 13, for correlating to likelihood across MCMC samples.

References

David Bamman, Brendan O’Connor, and Noah A. Smith. Censorship and content deletion in
chinese social media, 2011. In submission to WWW-2012.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. The Journal of
Machine Learning Research, 3:9931022, 2003.

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith, and Eric P. Xing. A latent variable model for
geographic lexical variation. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1277—1287, 2010.

David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Albert-Lszl Barabsi, Devon Brewer,
Nicholas Christakis, Noshir Contractor, James Fowler, Myron Gutmann, Tony Jebara, Gary
King, Michael Macy, Deb Roy, and Marshall Van Alstyne. Computational social science. Sci-
ence, 323(5915):721 –723, February 2009. doi: 10.1126/science.1167742. URL http://www.

sciencemag.org/content/323/5915/721.short.

Brendan O’Connor, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A Smith. From
tweets to polls: Linking text sentiment to public opinion time series. In International AAAI
Conference on Weblogs and Social Media, Washington, DC, 2010a.

Brendan O’Connor, Jacob Eisenstein, Eric P. Xing, and Noah A. Smith. A mixture model of demo-
graphic lexical variation. In Proceedings of NIPS Workshop on Machine Learning in Computational
Social Science, 2010b.

Brendan O’Connor, David Bamman, and Noah A. Smith. Computational text analysis for social
science: Model assumptions and complexity. In Proceedings of the Second Workshop on Comptua-
tional Social Science and the Wisdom of Crowds (NIPS 2011), 2011.

Daniel Ramage, Christopher D. Manning, and Susan Dumais. Partially labeled topic models for
interpretable text mining. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, page 457465, 2011.

Evan Sandhaus. The New York Times Annotated Corpus, 2008.

Dani Yogatama, Michael Heilman, Brendan O’Connor, Chris Dyer, Bryan R. Routledge, and
Noah A. Smith. Predicting a scientific community’s response to an article. In Proceedings of
the 2011 Conference on Empirical Methods in Natural Language Processing, 2011.

20

http://www.sciencemag.org/content/323/5915/721.short
http://www.sciencemag.org/content/323/5915/721.short

iter

va
lu

e

2000

4000

6000

8000

−164000

−163000

−162000

−161000

1.5

2.0

2.5

3.0

3.5

●

●

●

●
●
●●

●

●

●

●
●
●●

●

●●
●●
●
●●●

●
●
●●
●●●●
●
●●●●●
●●●●
●
●●●●●●
●
●●●●
●●●●
●●●●●
●●
●
●●●
●●
●●●●●●●●
●●●●
●●●
●●●●
●
●●
●
●●●●●●●
●●●●●●●●
●●
●
●●
●●●
●●●●
●
●●●
●
●
●●
●●●●●●●●●●●●●●

●●●●●●●
●
●●●
●●●●●●
●●●●●●
●●
●●●●●●●●
●
●●●●●●
●●●●
●●
●
●●●●●●●
●●●●●●
●●●●●●
●
●●●●●●●
●●
●
●●●●
●
●●●
●●●
●●●●●●●●●●●

●●●●●●●
●●
●
●●●●
●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●

●●
●●●●
●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●●●●●●
●●●●●●●●
●
●●
●●●●●●●
●●●
●●●●●●●●●●●

●
●●●●●●●
●
●
●
●
●
●●
●●
●●●●●●
●●
●
●●●●
●
●●●●
●
●●●●●●
●
●
●●●●
●●
●
●●●●●●●●
●●●●●●●●
●
●

●

●●
●●
●
●●●

●
●
●●
●●●●
●
●●●●●
●●●●
●
●●●●●●
●
●●●●
●●●●
●●●●●
●●
●
●●●
●●
●●●●●●●●
●●●●
●●●
●●●●
●
●●
●
●●●●●●●
●●●●●●●●
●●
●
●●
●●●
●●●●
●
●●●
●
●
●●
●●●●●●●●●●●●●●

●●●●●●●
●
●●●
●●●●●●
●●●●●●
●●
●●●●●●●●
●
●●●●●●
●●●●
●●
●
●●●●●●●
●●●●●●
●●●●●●
●
●●●●●●●
●●
●
●●●●
●
●●●
●●●
●●●●●●●●●●●

●●●●●●●
●●
●
●●●●
●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●

●●
●●●●
●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●●●●●●
●●●●●●●●
●
●●
●●●●●●●
●●●
●●●●●●●●●●●

●
●●●●●●●
●
●
●
●
●
●●
●●
●●●●●●
●●
●
●●●●
●
●●●●
●
●●●●●●
●
●
●●●●
●●
●
●●●●●●●●
●●●●●●●●
●
●

●

●

●
●●●●●●●●

●
●●●●●●

●
●●●●●●●

●●●●●●●●●●●
●●●●●

●
●●
●
●●●●

●●●●●●●●●
●●●●

●
●●●●

●
●●

●
●●●●

●●●●
●
●
●●●

●●●●
●●●●●●●

●●●●●

●

●

●
●●●●●●●●

●
●●●●●●

●
●●●●●●●

●●●●●●●●●●●
●●●●●

●
●●
●
●●●●

●●●●●●●●●
●●●●

●
●●●●

●
●●

●
●●●●

●●●●
●
●
●●●

●●●●
●●●●●●●

●●●●●

0 1000 2000 3000 4000 5000

changes
ll

alpha_conc

iter

va
lu

e

1250

1300

1350

1400

−160800

−160700

−160600

−160500

−160400

1.40

1.45

1.50

1.55

1.60

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●●
●
●●
●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●●●
●
●

●

●
●
●

●

●

●

●●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●●
●
●●
●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●●●
●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●●
●

●

●

●

●
●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●
●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●●
●

●

●

●

●
●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

4200 4400 4600 4800 5000

changes
ll

alpha_conc

Figure 4: Tiny dataset (265 documents)

iter

va
lu

e

20000
30000
40000
50000
60000
70000
80000
90000

−1585000

−1580000

−1575000

−1570000

−1565000

11.8
12.0
12.2
12.4
12.6
12.8

●

●

●

●
●
●●

●

●

●

●
●
●●

●
●
●
●
●●●
●
●●
●●
●●●
●
●●●●●
●●●●●●●●●
●●●●●●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●
●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●

●
●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●
●●●●●●●
●●●●●●
●
●●
●●●●●●●●
●
●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●
●
●
●●●
●
●●
●●
●●●
●
●●●●●
●●●●●●●●●
●●●●●●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●
●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●

●
●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●
●●●●●●●
●●●●●●
●
●●
●●●●●●●●
●
●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●
●

●●●
●

●

●
●
●●●●

●
●

●

●

●

●●

●●

●

●●

●
●●

●

●●

●
●

●
●●
●

●
●
●

●

●
●●
●

●

●
●
●

●●

●
●

●●●●
●

●
●●
●

●

●●
●

●●
●
●

●●
●

●
●

●

●
●
●
●

●●
●

●

●●●

●

●
●

●

●
●●●●

●●
●

●

●

●
●

●●●
●

●

●
●
●●●●

●
●

●

●

●

●●

●●

●

●●

●
●●

●

●●

●
●

●
●●
●

●
●
●

●

●
●●
●

●

●
●
●

●●

●
●

●●●●
●

●
●●
●

●

●●
●

●●
●
●

●●
●

●
●

●

●
●
●
●

●●
●

●

●●●

●

●
●

●

●
●●●●

●●
●

0 1000 2000 3000 4000 5000

changes
ll

alpha_conc

iter

va
lu

e

18200
18300
18400
18500
18600
18700

−1565600
−1565400
−1565200
−1565000
−1564800
−1564600
−1564400

12.30
12.35
12.40
12.45
12.50
12.55
12.60

●
●

●

●

●●

●

●

●

●

●
●

●

●●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●
●

●●
●

●

●

●

●●

●

●

●
●
●

●

●

●
●●

●

●
●

●
●●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●
●

●●
●

●

●

●

●●

●

●

●
●
●

●

●

●
●●

●

●
●

●
●●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●
●

●
●

●

4200 4400 4600 4800 5000

changes
ll

alpha_conc

Figure 5: Small dataset (2600 documents)

iter

va
lu

e

1000000

1500000

2000000

2500000

−37850000

−37800000

−37750000

−37700000

13.0
13.5
14.0
14.5
15.0
15.5

●

●

●

●

●
●
●
●
●●●

●

●

●

●

●
●
●
●
●●●

●
●

●
●
●●
●
●●
●●
●●
●●●

●●●●●
●●●

●●●●
●●●●●●●

●●●●●●●●●
●●
●●●●●●●

●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●

●
●

●
●
●●
●
●●
●●
●●
●●●

●●●●●
●●●

●●●●
●●●●●●●

●●●●●●●●●
●●
●●●●●●●

●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 200 400 600 800 1000

changes
ll

alpha_conc

Figure 6: Full dataset (52000 documents)

Figure 7: Model 1 Gibbs sampling runs, on different sized datasets. The smaller datasets have
5000 iterations, and the large has only 1000. We show just the last 1000 iterations on the right.
Statistics shown are are (1) number of z changes per iteration, (2) total p(z, α | w, β) log-posterior
(calculated every 10 iterations), and (3) the α parameter, resampled every 50 iterations.

21

Figure 8: QQ-plots of the 500 simulated chains, showing their distribution converging to the true
posterior over each slice sampling iteration. Each plot is the QQ-plot of 500 chain states, all at the
same iteration.

V3

V
4

100.6

100.8

101

101.2

101.4

101.6

200 400 600 800

V1
trace.resamp.conc=.01.out

trace.resamp.conc=1.out

trace.resamp.conc=100.out

V3

V
4

3.2

3.4

3.6

3.8

4.0

4.2

4.4

200 400 600 800

V1
trace.resamp.conc=.01.out

trace.resamp.conc=1.out

trace.resamp.conc=100.out

Figure 9: α parameter values over time, when being resampled, from three very different initial
positions α = 0.01, 1, 100. The left plot shows the entire history; the right shows from iteration 200
until the end. This is Model 1 on the small dataset. [BTO: TODO many obvious graph cleanups]

22

iter

va
lu

e

2e+06
3e+06
4e+06
5e+06
6e+06
7e+06

−5.0e+07
−4.9e+07
−4.8e+07
−4.7e+07
−4.6e+07
−4.5e+07
−4.4e+07

8.8
8.9
9.0
9.1
9.2
9.3

●●●●●
●
●●

●●●●●
●
●●

●

●

●

●
●
●
●●
●●
●●●
●●●
●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●
●●
●●
●●●
●●●
●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●●
●

●●●
●●

●●
●

●●
●●

●

●
●●●●

●●●
●

●●●
●

●●●●

●

●

●

●
●

●●
●

●●●
●●

●●
●

●●
●●

●

●
●●●●

●●●
●

●●●
●

●●●●

0 500 1000 1500

changes
ll

alpha_conc

Figure 10: Model 2 trace plots, K = 10, R = 100, full dataset.

23

Figure 11: Fragment of a Model 2 role-frame matrix; K = 10, R = 100, full dataset. (0.787
mass) indicates that thewords shown comprise 0.787 of the total probability mass of that word
multinomial. [BTO: TODO massive overhaul, this is a quick-and-dirty screenshot from my HTML
inspector—bad. going to all change anyways]

Figure 12: Two frames from the above model, with their highest-probability roles for each (V,S,O)
argument position—these are two of the frames for which role 61 is active. [BTO: TODO this is
impossible to read. . .]

24

-6.0e+07 -5.5e+07 -5.0e+07 -4.5e+07-2
.0
e+
07

-1
.5
e+
07

-1
.0
e+
07

-5
.0
e+
06

ll

ps
eu
do
_l
l

-44150000 -44050000 -43950000

-4
95
00
00

-4
90
00
00

-4
85
00
00

-4
80
00
00

-4
75
00
00

ll

ps
eu
do
_l
l

Figure 13: Correlation of running pseudolikelihood (evaluated during Gibbs sampling) to actual
likelihood (evaluated exactly via the DCM PMF (section 9)), for one MCMC run (small dataset,
Model 1). Left: shown for all iterations where likelihood was evaluated. Right: shown for itera-
tions 500 and later, with lines drawn between successive iterations.

25

	Introduction: Frame induction for corpus analysis
	Frames and scripts
	Document-word mixture model: LDA
	Semantic tuple mixture models
	Mixture models of documents, tuples, and roles
	Model 1: Document-Tuple
	Model 2: Document-Tuple-Role
	Model 3: Metadata-Frame associations
	Posterior inference for hyperparameters

	Experiments
	Dataset
	Parse preprocessing
	Model fitting
	Effects of changing Dirichlet concentration paramters
	Slice sampling Dirichlet concentration parameters

	Results
	Frame lexicons
	Evaluation

	Conclusion
	Appendix: Dirichlet-multinomial conjugacy and the DCM
	DCM PMF in LDA hyperparameter sampling

