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1 Definitions and lemmas

For the Hsu et al. setting, same notation as Siddiqi et al. Their convention:
columns for conditioning variable. Lemma references are for Hsu, but have
equivalents in Siddiqi. A little linear algebra review is at end of these notes.

n observation types
m hidden state classes; m ≤ n
T ≡ [ P (ht+1 = i | ht = j) ]ij (m×m)

O ≡ [ P (xt = i | ht = j) ]ij (n×m)

Ax ≡ [ P (ht+1 = i | ht = j) P (xt = x | ht = j) ]ij (m×m)

≡ T diag(O1,x, O2,x ... On,x) = [ TijOxj ]ij

[P1]i ≡ P (x1 = i) (n) unigrams
[P2,1]ij ≡ P ((x2, x1) = (i, j)) (n× n) bigrams

[P3,x,1]ij ≡ P ((x3, x2, x1) = (i, x, j)) (n× n) skip bigrams around x

P1 = ~1TmTdiag(~π)OT =

[
m∑

k

m∑

l

Tkl~πlOil

]

i

marg’ize hiddens

P2,1 = OTdiag(~π)OT =

[
m∑

k

m∑

l

OikTkl~πlOjl

]

ij

marg’ize hiddens, see diagram

O = P2,1(T diag(~π)OT)+

U ≡ left singular vectors of P2,1 (n×m)

~b1 ≡ UTP1 (m)

= (UTO)~π L3
~b∞ ≡ (PT

2,1U)+P1 (m)

= 1m(UTO)−1 L3

Bx ≡ (UTP3,x,1)(UTP2,1)+ (m× n)

= (UTO)Ax(UTO)−1 L3

~bt ≡
Bxt−1:1b1

bT∞Bxt−1:1
b1

(m) observable repr. of state

~bt+1 =
Bxt

bt
bT∞Bxt−1:1

bt
(m) L4

~ht ≡ [ P (ht = i|x1:t−1) ]i (m) hidden state vector
~bt = (UTO)~ht (m) L4: relationship to hidden state

U~bt = O~ht = [ P (xt = i | x1:t−1) ]i (n) R5

P (x1:t) = ~bT∞Bx1:t
~b1 L3
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2 Matrices as graph fragments

Here are graph fragments illustrating Ax and P2,1, marking the random vari-
able’s values — i.e. the matrix indices.

ht ht+1

xt

j i
T

O

ht ht+1

xt

l k
T

O

xt+1j i

[Ax]ij =TijOxj

O

x

[P2,1]ij =P ((xt+1, xt) = (i, j))

=
m�

k,l

P (xt+1:t = (i, j), ht+1:t = (k, l))

=

m�

k,l

OikTklπl[O
T]lj

3 Ax

Ax is called the “observation operator”. We can think of it as the backward
probability computation operator, and AT

x is the forward probability compu-
tation operator. If you multiply by AT

x , you compute the next marginal over
hidden states accounting for the previous observation, summing out the pos-
sible previous states.1 Using the transpose lets us restate Lemma 1 as right
multiplications:

P (x1, x2, ... , xt) = ~πAT
x1
AT

x2
... AT

xt
1m

Their Lemma 1 writes it as ~1mAxt ...Ax1~π (abbreviated ~1mAxt:1~π) so successive
left-multiplication corresponds to the forward algorithm. Right-multiplication
by Ax is the backward algorithm: compute previous timestep’s marginal by
summing out possible next timestep states, integrating against the previous
timestep’s conditional observation likelihood.

1 Though, if I look it up I think the standard definition for forward probabilities uses Oxi not
Oxj . But you can define either way to get a legitimate marginal probability of the observations.
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4 P2,1 and its SVD

Under the HMM, what’s the bigram probability distribution? You can marginal-
ize out the hidden variables like so:

[P2,1]ij = P ((x2, x1) = (i, j)) =

m∑

k,l

OikTkl~πlOjl

P2,1 is rank m as noted in Lemma 2. Decompose as

P2,1 = U Λ V T

(n× n) (n×m) (m diag) (m×m)

So a single bigram probability can be written more simply as

P ((x2, x1) = (i, j)) =

m∑

z

λzUziVzj

A possible interpretation: The right token i contributes a latent U.,i vector,
and the left token j contributes a latent V.,j vector. The similarity (inner prod-
uct) of the latent vectors tells you how compatible the words are — i.e. their
bigram probability.

We can also view the HMM marginal bigram probability in this way, in
which there are m2 dimensions of possible compatibilities between i and j.
But there isn’t a single simple latent vector for each token; that’s what the fac-
torization of P2,1 = OTdiag(~π)OT is for.

(What I was tempted to say was, you use one latent vector to project into
a latent space, and the other to project down into the probabilities of the other
token. But that’s more like SVD on the conditional, not joint, bigram probabil-
ities, and perhaps a little like the Saul and Pereira transition hidden class story
instead of an HMM. Hm.)

Note the learning algorithm only uses U .

5 U , UTO and HMM vs. observable representations

Hsu’s Condition 2 says UTO must be invertible. “In other words, U defines an
m-dimensional subspace that preserves the state dynamics. A natural choice
for U is the thin SVD of P2,1.”

UTO is important. It’s the projection operator between the observable and
HMM representations of state.

~bt, Bx work in the observable representation, while ~ht, Ax work in the HMM
representation.

• ~bt is the observable representation of state, while ~ht is the HMM repre-
sentation of state.
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• Bx is the observation operator in the observable representation, whileAx

is the observation operator in the HMM representation.

~b1 ≡ UTP1 = [
∑n

i UizP (xt = i)]z ... what is this? Expected value of pro-
jecting into the observable-repr-state z, expected over empirical unigram dis-
tribution? Then they prove also ~b1 = (UTO)~π or more generally ~bt = (UTO)~ht
which says how to transform between the HMM state and observation-representation
state.

For the relationship between Bx and Ax, the Siddiqi et al. slides call UTO
the “similarity transform of the true HMM parameterAx” becauseBx = (UTO)Ax(UTO)−1.

6 Reduced rank HMM

The twist in Siddiqi et al. is to say T is low rank k, so it decomposes as

T = R S
(m×m) (m× k) (k ×m)

This means their model is a two-layer model: from observation type space of
n symbols, to the state transition space of m states, to their latent space of k
dimensions. This is their Figure 1(B).

Because T is rank k, the generative process ensures that P2,1 is only rank k
as well. Therefore U is (n× k) in the Siddiqi et al. model.

7 Actual algorithm

In either the reduced rank or normal case, once you compute U , you compute
~b1,~b∞, Bx and then recursively apply them to getP (x1..xt) and/orP (xt|x1..xt−1)
as you like. I’m wondering if you can use the observable-represenations to
back out the original HMM via a linear transform... but you don’t know O so
can’t compute UTO maybe. The ArXiV version of Siddiqi et al. mentions this
at the very end, calling it the “positive identification problem.” They mention
a current technique for doing it is unstable but don’t explain why.

8 Theoretical guarantees

This is the big attraction — this method estimates P (x1...xt) with arbitrar-
ily high accuracy with more data. EM does not have this guarantee. (Does
MCMC? Tricky question. (1) Infinite computation time says MCMC gives cor-
rect posteriors for the data. Does that hold for these margnals too? (2) Spectral
HMM doesn’t need infinite or even high computation time. Count up the the
n-gram matrices, do some SVD and a few inversions... very low-order polyno-
mial.)
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I’m more interested in whether it recovers the parameters of the HMM —
T and O — correctly (or rather, correctly up to the linear UTO transform) with
more data. I would think this is more like the usual notion of statistical consis-
tency, as opposed to probabilities of x. It’s the more usual setting for unsuper-
vised POS tagging and the like.

Note in their applications (state space tracking, video modeling), they’re
quite happy just to have a better P (xt|x1..xt−1) model. The reduced rank
method is a big win for them because there is a much lower dimensional man-
ifold in their problems that they can exploit.

9 Relationship to Schuetze etc.

Turney and Pantel 2010 have a review of matrix factorization approaches to
distributional similarity. The versions where rows are words and columns are
contexts ... are a lot like the P2,1 matrix. I think the early 90’s Schuetze work
may have been the first of this sort of thing.

10 Linear algrebra stuff

Sources: Wikipedia and Matrix Cookbook

10.1 SVD

(Most any) matrix can be written out as a singular value decomposition. If X
is full rank and has m < n, it’s

X = U Λ V T

(n×m) (n×m) (m×m) (m×m)

Where Λ = diag(λ1...λm), the singular values.
If X is only rank k < m, that means you only need a k-dimensional latent

space to perfectly reconstruct it. So the last λk+1...λm eigenvalues will be zero,
and the k + 1..m columns of U and V are irrelevant. So the SVD is just

X = U Λ V T

(n×m) (n× k) (k × k) (k ×m)

The reconstruction of an elementXij uses a dot-product of column ofU against
a column of V — called the left and right singular vectors — scaled by Λ.

Xij =
∑

z=1..k

λzUziVzj

Note that if all you want to do is come up with a factorization ofX into two
matrices, you can multiply the singular values into either U or V (or a bit of
both). Scaling out the singular values in the SVD makes the columns of U and
V be orthogonal and unit-norm.
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10.2 Moore-Penrose pseudoinverse (A+)

It’s a generalization of the matrix inverse. For any matrix A,

• There are 0 or 1 vanilla inverses A−1.
def: AA−1 = A−1A = I

• There are 1 or more generalized inverses A−.
def: AA−A = A

• There is exactly 1 Moore-Penrose pseudoinverse A+.
def: AA+A = A and A+AA+ = A+,
and both A+A and AA+ are symmetric.
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