Notes on matrix/spectral views of HMM'’s

probably has errors so look out

Brendan O’Connor

May 18, 2011
1 Definitions and lemmas

For the Hsu et al. setting, same notation as Siddiqi et al. Their convention:
columns for conditioning variable. Lemma references are for Hsu, but have
equivalents in Siddiqi. A little linear algebra review is at end of these notes.

n observation types
m hidden state classes; m <n
T=[P(hi1=1i|he=3)li
O=[Plxy=i|hi=J)li
Az =
=T diag(O1,4, 02,4 ...
[P1]; = P(z1 =1)
[P21]ij = P((z2, 1) = (i,7))
[Ps21lij = P((z3, 22, 21) = (4,2, j))
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2 Matrices as graph fragments

Here are graph fragments illustrating A, and P, ;, marking the random vari-
able’s values — i.e. the matrix indices.
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3 A,

A, is called the “observation operator”. We can think of it as the backward
probability computation operator, and A] is the forward probability compu-
tation operator. If you multiply by Al, you compute the next marginal over
hidden states accounting for the previous observation, summing out the pos-
sible previous states.! Using the transpose lets us restate Lemma 1 as right
multiplications:

S AT ST T
P(xy, 29, ..., x) = TA, Ay, o Ay, 1

Their Lemma 1 writes it as fmAzt ...A,, 7 (abbreviated fmAzmﬁ) SO successive
left-multiplication corresponds to the forward algorithm. Right-multiplication
by A, is the backward algorithm: compute previous timestep’s marginal by
summing out possible next timestep states, integrating against the previous
timestep’s conditional observation likelihood.

! Though, if I look it up I think the standard definition for forward probabilities uses O; not
O . But you can define either way to get a legitimate marginal probability of the observations.



4 P,;andits SVD

Under the HMM, what's the bigram probability distribution? You can marginal-
ize out the hidden variables like so:

[Paaliy = P((w2,21) = (i,1)) = > O TuOy
k,l

P, ; is rank m as noted in Lemma 2. Decompose as

Py = U A VT
(nxn) (nxm) (mdiag) (m xm)

So a single bigram probability can be written more simply as

P((xg,21) = (i,)) = >_ A:U.iVzy

A possible interpretation: The right token i contributes a latent U, ; vector,
and the left token j contributes a latent V. ; vector. The similarity (inner prod-
uct) of the latent vectors tells you how compatible the words are — i.e. their
bigram probability.

We can also view the HMM marginal bigram probability in this way, in
which there are m? dimensions of possible compatibilities between i and .
But there isn’t a single simple latent vector for each token; that’s what the fac-
torization of P, ; = OTdiag(7)OT is for.

(What I was tempted to say was, you use one latent vector to project into
a latent space, and the other to project down into the probabilities of the other
token. But that’s more like SVD on the conditional, not joint, bigram probabil-
ities, and perhaps a little like the Saul and Pereira transition hidden class story
instead of an HMM. Hm.)

Note the learning algorithm only uses U.

5 U,U'O and HMM vs. observable representations

Hsu’s Condition 2 says UTO must be invertible. “In other words, U defines an
m-dimensional subspace that preserves the state dynamics. A natural choice
for U is the thin SVD of P, ;.”

UTO is important. It’s the projection operator between the observable and
HMM representations of state.

l;t, B, work in the observable representation, while ﬁ;, A, work in the HMM
representation.

° 5,5 is the observable representation of state, while /_it is the HMM repre-
sentation of state.



e B, is the observation operator in the observable representation, while A,
is the observation operator in the HMM representation.

by = UTP, = [0 Ui, P(z; = 4)]. ... what is this? Expected value of pro-
jecting into the observable-repr-state z, expected over empirical unigram dis-
tribution? Then they prove also b; = (UTO)# or more generally b, = (UTO)h,
which says how to transform between the HMM state and observation-representation
state.
For the relationship between B, and A,, the Siddiqi et al. slides call U TO
the “similarity transform of the true HMM parameter A,” because B, = (UTO)A,(UTO)~L.

6 Reduced rank HMM

The twist in Siddiqi et al. is to say T is low rank k, so it decomposes as

T = R S
(m x m) (mxk) (kxm)

This means their model is a two-layer model: from observation type space of
n symbols, to the state transition space of m states, to their latent space of k
dimensions. This is their Figure 1(B).

Because T is rank k, the generative process ensures that P ; is only rank k
as well. Therefore U is (n x k) in the Siddiqi et al. model.

7 Actual algorithm

In either the reduced rank or normal case, once you compute U, you compute
b1, boo, B, and then recursively apply them to get P(z1..z;) and/or P(z|x1..24—1)
as you like. I'm wondering if you can use the observable-represenations to
back out the original HMM via a linear transform... but you don’t know O so
can’t compute UTO maybe. The ArXiV version of Siddiqi et al. mentions this
at the very end, calling it the “positive identification problem.” They mention

a current technique for doing it is unstable but don’t explain why.

8 Theoretical guarantees

This is the big attraction — this method estimates P(x;...z;) with arbitrar-
ily high accuracy with more data. EM does not have this guarantee. (Does
MCMC? Tricky question. (1) Infinite computation time says MCMC gives cor-
rect posteriors for the data. Does that hold for these margnals too? (2) Spectral
HMM doesn’t need infinite or even high computation time. Count up the the
n-gram matrices, do some SVD and a few inversions... very low-order polyno-
mial.)



I'm more interested in whether it recovers the parameters of the HMM —
T and O — correctly (or rather, correctly up to the linear U'O transform) with
more data. I would think this is more like the usual notion of statistical consis-
tency, as opposed to probabilities of x. It’s the more usual setting for unsuper-
vised POS tagging and the like.

Note in their applications (state space tracking, video modeling), they’re
quite happy just to have a better P(x;|z1..x,—1) model. The reduced rank
method is a big win for them because there is a much lower dimensional man-
ifold in their problems that they can exploit.

9 Relationship to Schuetze etc.

Turney and Pantel 2010 have a review of matrix factorization approaches to
distributional similarity. The versions where rows are words and columns are
contexts ... are a lot like the P ; matrix. I think the early 90’s Schuetze work
may have been the first of this sort of thing.

10 Linear algrebra stuff

Sources: Wikipedia and Matrix Cookbook

10.1 SVD

(Most any) matrix can be written out as a singular value decomposition. If X
is full rank and has m < n, it’s

X = U A VT
(n xm) (nxm) (mxm) (mxm)

Where A = diag(A1...\,), the singular values.

If X is only rank k& < m, that means you only need a k-dimensional latent
space to perfectly reconstruct it. So the last Axy1...\,, eigenvalues will be zero,
and the k£ + 1..m columns of U and V" are irrelevant. So the SVD is just

X = U A VT
(n xm) (nxk) (kxk) (kxm)

The reconstruction of an element X;; uses a dot-product of column of U against
a column of V' — called the left and right singular vectors — scaled by A.

Xij= > AUV

z=1..k

Note that if all you want to do is come up with a factorization of X into two
matrices, you can multiply the singular values into either U or V' (or a bit of
both). Scaling out the singular values in the SVD makes the columns of U and
V be orthogonal and unit-norm.



10.2 Moore-Penrose pseudoinverse (A™)
It’s a generalization of the matrix inverse. For any matrix A4,

e There are 0 or 1 vanilla inverses A~ 1.
def: AA~'=A"1A=17T

o There are 1 or more generalized inverses A~.
def: AATA=A

e There is exactly 1 Moore-Penrose pseudoinverse A™.
def: AATA= Aand ATAAT = AT,
and both A* A and AA™ are symmetric.
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