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1 Abstract

I explain evidence assimilation bias as the result of agents trying to main-
tain cognitive consistency. This can be interpreted as a boundedly rational
inference method — local search for a maximally likely world model. Given
a sufficiently complex network of beliefs, such an approximate Bayesian can
display systematically non-Bayesian behavior. These arguments are first
sketched via connectionist Hopfield networks, in line with previous psy-
chology literature, and then illustrated and analyzed in more detail with
probabilistic graphical models — Bayesian networks and Markov random
fields.

2 Introduction

Any theory of how people update their beliefs based on evidence needs to
account for at least three behaviors. The two basic ones are:

• Belief persistence: People can persist in their previously held beliefs
despite new evidence to the contrary.

• Belief revision: People can change their beliefs with sufficiently strong
new evidence.

Bayesian probability theory prescribes an optimal balance of persistence and
revision. A Bayesian updates his beliefs to become more consistent with the
likelihood of the evidence (revision), but moderates this update according
to his prior beliefs (persistence).

In many cases, people face complex, ambiguous evidence that must be
interpreted to determine its compatibility with one’s beliefs. This case gives
rise to the third more interesting behavior.

• Prior-dependent interpretation: How people interpret evidence de-
pends on their other beliefs.

This implies that different agents can interpret the same piece of evidence
in different ways. One particularly pathological example is when agents in-
terpret evidence as supporting their previously held beliefs, which can even
cause them to update in different directions; this can result in a polarization
of belief among heterogenous group. In general, when agents tend to inter-
pret evidence in a manner favorable to their prior beliefs, the effect may be
called evidence assimilation bias (Lord, Ross, and Lepper, 1979).
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I focus on the problem of evidence with multiple possible interpretations,
so the weight of the evidence itself requires a judgment. The correct Bayesian
inference on this interpretation variable actually should depend on one’s
prior beliefs on the hypothesis under question. In fact, the interpretation
inference depends on the interpretations of all other pieces of evidence.

A Bayesian needs to maintain a belief distribution over all possible com-
binations of values of variables, not just a single belief level per variable. I
argue the computational costs involved are too high to be realistic. A simple,
plausible alternative, trying to maintain the most likely explanation and in-
crementally revising in the light of new evidence, displays order dependence
and assimilation bias.

Briefly, the model is as follows: an agent, having initially seen positive
evidence, will be rationally skeptical of later negative evidence. But if a large
amount of negative evidence accumulates, it would be better to believe in the
negative evidence and deny the positive evidence. However, an agent lacking
the memory, attention, or motivational resources to review and revise past
interpretations will instead continue to make local revisions, becoming stuck
in a suboptimal local maximum.

In Section 4 I review some of the connectionist constraint satisfaction
models of belief revision. These Hopfield networks display interesting prop-
erties, including all three behavioral desiderata listed above. Section 5 rein-
terprets these models as probabilistic inference, so their behavior can be
compared to optimal Bayesian updating. Such a probabilistic graphical
model for the evidence interpretation problem is developed and analyzed.

3 Empirical demonstrations of belief persistence
bias

Lord et al. (1979) presented death penalty proponents and opponents with
the results and details of supposed empirical studies on whether capital
punishment caused a change in crime rates. Like most actual studies on
the topic, the evidence was often mixed and open to interpretation. Death
penalty proponents tend to find methodological faults in anti-deterrence
evidence, and assess pro-deterrence evidence positively; and vice-versa for
opponents. In fact, this difference in scrutiny carries over to the final revision
on their beliefs — being presented with the same evidence caused partici-
pants’ self-reported beliefs to diverge, as seen in Figure 1, though doubt has
been raised on the robustness of the polarization phenomenon (Miller et al.,
1993).
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Figure 1: (a) Example of evidence used by Lord et al. (1979). (b) Participants’
self-reported belief revision after seeing the pro-deterrence then anti-deterrence ev-
idence, and seeing the two-sentence summary versus several pages of details about
the study. More information causes more polarization.

(a)

(b)
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This result seems troubling because it suggests the difficulty of agree-
ment on complex social and political issues. It also seems counter-normative
to give evidence different levels of scrutiny. In this paper I will focus on the
problem of bias when interpreting evidence relating to a central hypothesis.
But numerous other examples of belief persistence biases and other related
phenomena exist in the literature, such as confirmation bias,1 belief persever-
ance, myside bias, selection bias, cognitive dissonance, order effects, illusory
correlations, Einstellung effects, etc. Organizing and summarizing these ef-
fects is a daunting task in itself. For that, I defer to reviews such as the ones
contained in Nickerson (1998), Rabin and Schrag (1999), Baron ch. 9 (2000),
and Nisbett and Ross (1980).

4 Connectionist cognitive consistency

In this section I will first explain the idea of cognitive consistency, then
sketch a general Hopfield network model intended be representative of a
series of models mostly in the social psychology literature, which I review.
This model is interesting for the behavior it exhibits, but I do not analyze
it extensively, nor do I specify its psychological interpretation very well;
my major model appears in Section 5, using Bayesian probability as its
semantics.

4.1 Introduction

A way to conceptualize the structure and relations among a person’s beliefs is
as a network. Nodes represent individual beliefs or attitudes. Links between
nodes can represent a variety of relationships, including relatedness, type
inheritance, or other structural aspects of knowledge.

The literature on cognitive consistency treats connections between nodes
as indicators of compatibility or degree of association. If two beliefs are
strongly connected, such between as BUSH and CONSERVATIVE, there is
a positive (consonant) association between them. A negative (dissonant)

1The term “confirmation bias”, especially historically within the psychology literature,
refers to a different, if possibly related, phenomenon: a search strategy biased towards
finding evidence confirming one’s prior beliefs (Wason, 1977, 1968). But more recently,
the term seems to have become more general, encompassing evidence processing biases as
well. This use can be seen in psychology (Nickerson, 1998), behavioral economics (Rabin
and Schrag, 1999), and numerous popular sources, such as the Wikipedia entry (http:
//en.wikipedia.org/wiki/Confirmation_bias).
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connection, such as between BUSH and GAY RIGHTS, indicates a mutual
incompatibility.

A possible explanation for belief persistence bias is the theory of cognitive
consistency: people strive to maintain consistency among their beliefs (Abel-
son et al., 1968; Heider, 1958). A person may hold a positive or negative
attitude towards each belief node. Cognitive dissonance occurs when a per-
son has two positive, or two negative attitudes towards two negatively linked
beliefs; cognitive consonance (consistency) occurs in the opposite case, when
a person hold positive attitudes towards consonant beliefs.

Furthermore, cognitive dissonance theory (Festinger, 1957) holds that
when people have dissonance, they are motivated to decrease it. This could
entail searching for consonant evidence, or changing one’s beliefs to fall in
line with one another.2

Despite the fact that the exact meaning of the positive and negative
links can be somewhat vague, psychologists have vividly formalized cogni-
tive consistency theories as Hopfield belief networks, in which consistency
is achieved through a soft constraint satisfaction process. Putting specific
semantics of these networks on hold, what follows is a description of a simple
mathematical model intended to be representative of constraint satisfaction
models.

For each belief, an agent holds an evaluation xi ∈ [−1, 1] representing
the range of dislike/rejection to liking/acceptance. (Perhaps xi represents
affective evaluation, or degree of belief.) A Hopfield network connects these
beliefs via bidirectional symmetric weights wij = wji ∈ R. Weights are
fixed. We measure the consonance (negative “energy”) of a network state
as −E(~x) =

∑
i<j xixjwij .3 Positive links contribute consonance when their

endpoints are the same state, and negative links contribute consonance when
their endpoints are opposite.

Example Consider Figure 2, specifying the signs of binary constraints
over the nodes (C,D,R,A). Any assignment of non-zero values to the nodes
violates at least one of the constraints. For example, ~x = (C,D,R, A) =

2The psychological literature using the term “cognitive dissonance” tends to focus on
dissonance between people’s self-perceptions and decisions, especially through experiments
that force participants to take certain (often bizarre) actions, e.g. Elliot and Levine (1994),
Coooper and Fazio (1984); see Lepper and Shultz (2001) for a review, and Zimbardo et al.
(1965) to read about poor psych undergrads manipulated into eating grasshoppers. This
paper avoids the case of whether decisions conform with beliefs, and concentrates just on
the relationships between different beliefs.

3 The negative sign on −E is annoying but conventional; it is due to the model’s
derivation from statistical mechanics.
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Figure 2: A hard-to-satisfy consistency network. Exact weight values are omitted;
which assignment on (C,D,R,A) is optimal depends on the relative magnitude of
the weights.

Catholic

Death 
Penalty

Republican

Abortion

+

––

–

(1, 1, 1,−1) (i.e., conservative Catholic) violates the negative constraint wCD,
but fulfills all the other constraints. The consonance of an assignment ~x is

−E(~x) = xCxDwCD + xDxRwDR + xRxAwRA + xAxCwAC

Table 4.1 illustrates the consonance of several different ~x assignments, as-
suming all weights are either +10 or −10; that is, (wCD, wDR, wRA, wAC) =
(−10,+10,−10,−10).

Table 1: Various ~x assignments and their consonance calculations, assuming weight
magnitudes of 10. Note the second row cannot be arrived at via linear threshold
updates, since it has a 0 value.

xC xD xR xA

xCxDwCD xDxRwDR xRxAwRA xAxCwAC −E(~x)
1 1 1 −1

−10 (vio) +10 (sat) +10 (sat) +10 (sat) 20
1 0 1 −1

0 (neutral) 0 (neutral) +10 (sat) +10 (sat) 20
1 1 −1 1

−10 (vio) −10 (vio) +10 (sat) −10 (vio) −20

The constraint satisfaction problem is to find a belief state ~x that max-
imizes consonance. Each node has a net input activation denoted ai =
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∑
j wijxj . Writing −E(~x) = 1

2

∑
i xiai makes it apparent that the local con-

sonance contribution of an individual neuron i is proportional to its state
multiplied by its net input activation. Hopfield’s original formulation (1982)
iterates through all nodes, updating them via a linear threshold rule that
greedily optimizes consonance:

xi :=


−1 if ai < 0
+1 if ai > 0
xi if ai = 0

So when updating node xi, the algorithms selects the state for xi that max-
imizes consonance. Because the list of neuron states ~x can be thought of as
a vector in an n-dimensional space, this algorithm is also called coordinate
ascent on the consonance function. Since −E is bounded above and weakly
increases at each update, the algorithm must converge to a stable state ~x
that locally maximizes −E(~x).

It is helpful to think of a Hopfield network as solving a set of soft con-
straints. For every pair of connected nodes (i, j), there exists a binary
constraint function φij(xi, xj) = wijxixj . The function φij can be thought
of as a negative cost, “happiness,” or consonance, for the current state of
the pair (xi, xj). The total consonance to be optimized is the sum of all
constraint functions. A Hopfield network only uses binary symmetric con-
straints, but it is easy to conceive of more general constraint satisfaction
problems involving non-symmetric or non-binary φ functions. (Section 5 de-
velops a probabilistic evidence interpretation task as a problem with many
three-way constraints.)

In contrast to the discrete linear threshold rule, a continuous Hopfield
network uses a soft S-shaped update function, so the xi’s achieve interme-
diate values between −1 and +1, representing levels of attitude or belief.
Artificial neural networks often use the logistic sigmoid g(a) = 1/(1 + e−a);
for our formulation on [−1, 1] it is useful to use the rescaled tanh form

xi := tanh(βai) ( = g(2βai)× 2− 1)

where the parameter β controls the threshold sharpness; β →∞ approaches
the linear threshold rule. There is no guarantee that every update increases
consonance, but convergence does occur under asynchronous updating (see
MacKay ch. 42 (2003) and Section 5.8). While this rule is less locally greedy
than the linear threshold rule, it can still get stuck in local maxima.

Hopfield networks have been used to simulate a number of experiments
within the cognitive dissonance tradition, focusing on self-perception and af-
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Figure 3: Linear threshold and tanh update functions, β = 1

fect (e.g. Shultz and Lepper, 1996; Read et al., 1997). Consistency maximiza-
tion has been used to analyze other phenomena, such as schemas (Rumelhart
et al., 1986; Smolensky, 1986). There are a few analyses of evidence pro-
cessing.

To give a flavor of some of these models, Figure 4 shows several net-
work configurations used by Shultz and Lepper (1996) to simulate a classic
dissonance experiment, in which it was found that when joining a group,
participants engaging in embarrassing initiation tasks ended up liking the
group more. Shultz and Lepper set up three-node networks whose weights
and initial states were intended to represent the different conditions in the
experiment. They ran constraint satisfaction updates4 over many iterations
until the node states stabilized, representing participants’ dissonance reduc-
tion processes.

There has been some work analyzing belief revision from the viewpoint
of connectionist constraint satisfaction. Simon et al. (2004) found a ten-
dency toward consistent judgments among multiple pieces of evidence in
mock jury experiments, though they did no explicit modeling. Lodge and
Taber (2000) describe an affective association explanation for an implicit
attitudes study of political beliefs. Paul Thagard’s ECHO system — which
basically constructs and runs Hopfield constraint satisfaction networks un-
der a variety of possible rules (Thagard, 2002) — has been used to simulate
several belief revision examples, including the revision of naive physics be-
liefs when learning contradictory ideas in elementary physics (Ranney and
Thagard, 1988), and “bidirectional reasoning” between arguments and de-

4The update rule was different and more complicated than rules presented here. A key
feature was that node states would update only incrementally from their current state.
“Resistance” parameters similar to β were used, so convergence took many iterations.
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Figure 4: One network setup from Shultz and Lepper (1996), simulating the disso-
nance experiment of Gerard and Mathewson (1966).

cisions (Holyoak and Simon, 1999). Very little of this work has contrasted
constraint network behavior versus Bayesian belief revision,5 and in gen-
eral has refrained from analysis of the properties of constraint satisfaction
systems, though Read et al. (1997) point out interesting parallels between
connectionist system dynamics and the Gestalt psychological theory from
which cognitive consistency theory was originally derived.

To my knowledge, have been no attempts to model the Lord et al. (1979)
death penalty study. Figure 5 provides a simple illustration in which be-
liefs are constrained to be consistent with one another. The initial net-
work shows two prior beliefs that the capital punishment deterrent works —
these might include remembered anecdotes, analogies from personal expe-
riences, etc. Since they are consistent with one another, there is a positive
link between them. This agent believes in both of them. Under the linear
threshold rule, this belief state is stable. Next, the agent learns of a new
anti-deterrence study. Its negative links with the pro-deterrence studies in-
dicates they contradict, or somehow go against one another. If the agent
starts with an initially positive assessment of the study, this introduces a
dissonance to the system.

To restore consonance, either the assessment of pro-deterrence evidence
has to flip negative, or the assessment of the anti-deterrence study has to
flip positive. In this case, updates to either of the pro-deterrence nodes

5 For example, Simon et al. are excessively hostile to the “algebraic” Bayesian ap-
proach, claiming it cannot model complex relations between evidence judgments and
hypotheses. This is true of very simple probabilistic models, but as demonstrated in
Section 5, graphical model techniques can easily represent, and be used to analyze, such
situations. Thagard (2000, 2002) notes a few of the similarities between his constraint
satisfaction system and certain types of probabilistic graphical networks.
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Figure 5: Stable configuration, then weakly dissonant new evidence. A linear
threshold update of the new evidence restores stability.

will fail to change them, but updating the anti-deterrence node will flip it
negative from the negative influence from the combined weight of multi-
ple pro-deterrence beliefs. A negative belief in the anti-deterrence study is
stable.

An interesting analysis of a large, data-derived constraint satisfaction
network appears in an early connectionist experiment of Rumelhart et al.
(1986), which models schematic concepts as high consonance combinations
of features. They first collected judgments from sixteen people of whether
40 room descriptors such as television, bed, or windows were typical of five
different room types. The 40 descriptors were connected in a Hopfield net-
work, with the weights wij high if the descriptors i and j tended to be both
on or both off, and wij low if they tended to be opposite values. The original
five room types were evident as local maxima on the consonance surface over
the 40-dimensional state space. Given a partial description of a room, con-
straint satisfaction updates could be run on the missing values to settle on
a stable local maximum of what a typical room satisfying that description
could be.6

6 In the probabilistic terminology of Section 5, this network was executing hill-climbing
MAP estimation conditional on the values contained in the partial description. A number
of probabilistic graphical models for representing schema and relations have since been
developed, e.g. probabilistic frame-based systems (Koller and Pfeffer, 1998), and Markov
logic networks (Domingos et al., 2006). I suspect, but have not worked out in detail, that
the room descriptor Hopfield net can be represented as an MLN. Perhaps anticipating
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Figure 6: Two-dimensional slice of the room descriptor consonance surface, taken
from Rumelhart et al. (1986).

Similarities and differences among the typical room prototypes are evi-
dent in the consonance surface; for example, room descriptor configurations
corresponding to office and bedroom are fairly similar, but bathroom is very
different; combinations of the three are very dissonant, as evidenced by the
dip in Figure 6.

We could imagine a belief revision problem occurring in this framework
— a person trying categorizing an object based on the incremental pro-
cessing of evidence. Asch (1946) found that presenting different orders of
personality traits can give distinctly different impressions of a person, e.g.
“intelligent, industrious, impulsive, critical, stubborn, envious” versus “en-
vious, stubborn, critical, impulsive, industrious, intelligent.” The first list
caused more favorable impressions than the second, though the only differ-
ence is order. Asch’s interpretation was that the term “intelligent” colored
the interpretation of later evidence. Receiving evidence and forming im-
pressions can be thought of as a search on a consonance surface similar to
Rumelhart et al.’s: starting off with “intelligent” as opposed to “envious”
initializes your constraint satisfaction search to a different region of possible
local maxima; the amount of movement the next several adjectives can cause

these developments, Rumelhart et al. use a Bayesian-justified rule to fit the weights to
data.
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is limited by your starting position.

4.2 A few properties of Hopfield cognitive consistency net-
works

In this section I will note a few behavioral properties of cognitive consistency
networks that make them attractive models of human reasoning, with the
caveat that I’m still too vague about the meaning of node activations and
link weights. Section 5 presents a model with much more clearly defined
semantics that has many of the same properties.

First, a Hopfield network allows both persistence and revision. We have
already shown examples of belief persistence in 5, when weak evidence fails
to change strongly held previous beliefs. But belief revision is also possi-
ble, since sufficiently strong new evidence or beliefs could knock one out
of the current attractor basin. Consider Figure 7, where a very strong
anti-deterrence study is presented. If the other studies get updated first,
the strength of the new anti-deterrence study will flip their belief states,
pushing the system into the attractor basin for a new anti-death penalty
equilibrium.7

Figure 7 also includes an alternate version with an intermediate belief
in whether deterrence works. The dynamics for these purposes are basically
similar. However, there is a clear two step process in belief revision: first the
agent changes his belief in whether deterrence works, then later will reassess
his now dissonant old beliefs in the other studies.

Second, cognitive consistency biases occur only as a byproduct of pro-
cessing over time. If a person is not trying to reconcile contradictions, or is
not attending to them, they may persist. Actual experienced consonance is a
function of both belief states and the distribution of attention on them. This
implies that further deliberation and assessment of evidence could entrench
a self-consistent worldview, which would manifest itself as evidence assim-
ilation biases. Also, if a person does not have enough time to process and
explain away destabilizing information — say, a barrage of new evidence or
a moment of lucidity — that may allow new dissonant nodes to accumulate
and then flip around the old beliefs. Finally, the rational case is also possi-
ble: given sufficient time and motivation, deliberative or intuitive processing

7However, if the new study gets updated first, it will be strongly revised to be dis-
believed. This may be realistic: if you first pause to assess your old beliefs instead of
explaining the new belief, that may be an important event to allow belief revision instead
of persistence. But if we want to model incontrovertibly strong evidence, we can introduce
for each node a biasi constant in the activation sum, so ai = biasi +

P
j wijxj .
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Figure 7: Strongly dissonant new evidence destabilizes the pro-death penalty equi-
lbrium, prompting belief revision.

could find that in response to new contradictory information it is better to
revise previous beliefs rather than explain away the new information.

Furthermore, this model can explain group polarization. The consistency
network is only guaranteed to locally maximize consonance. The networks
here all have two stable configurations: (1) belief in pro-deterrence and dis-
belief in anti-deterrence studies, and (2) vice-versa. If people are in different
local maxima, a commonly viewed piece of evidence could be insufficient to
knock them into the same attractor basin; instead, different prior beliefs
imply different directions of consonance hill climbing, thus different inter-
pretations of evidence.

Finally, this model may explain what Baron (2000) calls belief overkill :
when people tend to believe all the good arguments are on one side, caus-
ing them to hold overly consistent views. For example, in another capital
punishment attitude study, it was found that CP opponents tend to believe
both that capital punishment is immoral, and that capital punishment is
ineffective at deterring crime, while proponents tended to believe the op-
posite on both accounts. People who believed one but not the other were
rare, though this should be logically possible. (Ellsworth and Ross, 1983).
This is easily viewed in terms of a consistency network. “CP Moral” and
“Deterrence Works” are not directly connected, or are weakly connected,
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but each is positively connected to a node “CP Good.” Believing one but
not the other has to be a dissonant state because of the connections to “CP
Good”; if the state that disagrees with “CP Good” is selected for updating,
it will flip to conform.

4.3 Rational consistency?

Cognitive consistency networks are interesting because of their system dy-
namics of local maxima and processing over time. It seems like they can
assimilate evidence in a way biased toward previously held beliefs. But it
is not obvious why this is necessary, or why one could not simply accept
mixed evidence and hold an indifferent opinion. To judge whether bias or
correct information processing is taking place, we need to carefully formulate
the question in terms of a well-specified probabilistic inference problem. To
find the most likely explanation, we implement again a consistency search
— or, in probabilistic terms, a maximum (log)-likelihood search. The fol-
lowing section finds clear-cut assimilation bias operating analogously to the
properties observed above.

5 Bias in approximate Bayesian agents

In this section I argue that consistency search can be seen as an approxi-
mate Bayesian inference mechanism. Since it has problems getting stuck in
local maxima, its results can be substantially different from exact Bayesian
inference. In fact, I illustrate that consistency search can result in belief
persistence bias, defined as a systematic deviation from Bayesian inference
toward one’s prior beliefs.

5.1 Introduction to Bayesian inference

In the Bayesian view of probability theory, a probability is a degree of belief
in a proposition. The laws of standard probability are a rational method of
reasoning under uncertainty. At least two justifications exist. (1) The Cox
axioms prescribe a few axiomatic desiderata for reasoning about degrees of
belief, such as transitivity. It can be shown that any system of reasoning
satisfying these axioms can be mapped to standard probability theory (Cox,
1961; Jaynes, 2003). (2) The “Dutch book” argument shows that a decision-
maker that does not follow probability theory for its beliefs will accept losing
gambles. Thus probability theory ensures optimal performance. (de Finetti,
1970; Savage, 1954). There is, of course, much more to these accounts, as
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well as many other approaches to the foundations of probability theory;
see Suppes (2001) and Hajek (2003) for reviews.

Reassuringly, these different approaches for reasoning under uncertainty
all imply the standard definition of conditional probability,

P (A|B) = P (AB) / P (B)

and standard identities such as P (Ā) = 1− P (A).
We will extensively use two rules of probability theory. The first is the

law of total probability, in joint and conditional versions:

P (A) =
∑

b∈dom(B)

P (A, b) (1)

P (A) =
∑

b∈dom(B)

P (A|b) P (b) (2)

where dom(B) is the set of possible values a discrete B can attain. The
conditional version has a nice intuitive form: the probability of A is the
weighted average of its likelihood across all different scenarios of B, weighted
by the probability of each scenario.

The second rule is the celebrated Bayes’ rule to flip a conditional:

P (H|D) = P (H) P (D|H) / P (D)

Bayes’ rule is useful if we want to compute an updated belief in some hy-
pothesis H after learning data D, and we know the likelihood of data given
the hypothesis (D|H). Bayes rule says to multiply the prior P (H) by the
likelihood P (D|H), and normalize by 1/P (D). When viewing the posterior
P (H|D) as a function of H, the term 1/P (D) is just a constant, and it drops
out in many contexts we examine. One such context is the odds-ratio form
of Bayes’ rule, obtained by dividing P (H|D) by its negation P (H̄|D):

P (H|D)
P (H̄|D)

=
P (H)
P (H̄)

× P (D|H)
P (D|H̄)

O(H|D)︸ ︷︷ ︸ = O(H)︸ ︷︷ ︸ × P (D|H)
P (D|H̄)︸ ︷︷ ︸

Posterior odds Prior odds Likelihood ratio

The odds form O(.) of a probability P (.) is just P (.)
1−P (.) ; thus the prob-

ability of 1/2 is 1:1 odds, probability 3/5 is 3:2 odds, and probability 1/10
is 1:9 odds, etc. This is also known as the racetrack or betting odds. The
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posterior odds can be seen as a comparison between the updated belief that
H is true, versus the updated belief that H is false.

The odds form of Bayes’ rule makes it very clear that to update one’s
belief in H upon learning D, you simply multiply your prior odds-belief
O(H) by the likelihood ratio. If D is more likely given H than it is given
H̄, then the likelihood ratio is high, and the posterior odds increase. If D
is less likely under H than H̄, then the likelihood ratio is less than one, so
the posterior decreases. If the data is equally likely under either scenario,
then the data is completely non-informative with a likelihood ratio of 1, so
the posterior does not change.

The log-odds form of Bayes’ rule makes its incremental nature very
apparent, because Bayes updates simply proceed by adding the likelihood
“weight” of a piece of evidence:

log O(H|D) = log O(H) + log
P (D|H)
P (D|H̄)

Thus you move closer to the data likelihood, but moderated by your prior
belief. If your prior belief in H is non-informative, i.e. completely neutral
(for a binary hypothesis, P (H) = 1/2, O(H) = 1, log O(H) = 0), then
your posterior is completely determined by the likelihood. A strong prior
belief will move in the direction of the likelihood, but not be completely
determined by it.

The prior belief is simply one’s belief based on all evidence seen so far.
The question of where priors come from without any evidence at all is a
sticky topic in itself. Dodging the question, we note that there is always
some background evidence Z informing any belief, so really all the previous
Bayes’ rules were shorthand for the form:

P (H|DZ) = P (H|Z) P (D|HZ) / P (D|Z)

where all probabilities are conditioned on a background Z. This background-
conditional Bayes’ rule will also be used in this section.

Final miscellaneous definitions: we say A and B are marginally indepen-
dent if P (AB) = P (A) P (B). A and B are conditionally independent given
Z if P (AB|Z) = P (A|Z) P (B|Z). Note that it can sometimes be useful
to loosely interpret probabilistic independence as causal independence: if
variables are independent, they do not cause or affect one another.

Good introductions to Bayesian probability and statistics include Lee
(1997) and chapters 2 and 3 of MacKay (2003); see also Tom Griffiths’
reading list on Bayesian methods for cognitive science.8

8 Currently available at http://cocosci.berkeley.edu/tom/bayes.html
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5.2 Problem #1: inference from simple evidence

An unknown binary hypothesis H may be in one of two states, +1 or −1,
which we denote h+ or h−. Thus we abbreviate P (H=+1) as P (h+). An
agent observes a sequence of binary signals Di ∈ {d+

i , d−i }, which are iden-
tically and independently distributed (i.i.d.). That means two things. (1)
They are conditionally independent given a particular value of H. A causal
way to think of this conditional independence is that the hidden hypothesis
sends out visible signals to the agent. And, (2) each Di has the same distri-
bution given H. Specifically, each signal corresponds with the true state of
the hypothesis at probability θ:

P (d+
i | h+) = θ and P (d−i | h+) = 1− θ

P (d−i | h−) = θ and P (d+
i | h−) = 1− θ

Upon receiving each new signal, a Bayesian agent updates her beliefs via
Bayes’ rule. In odds form, the posterior belief in h+ versus h− after learning
from one signal is

O(h+ | d1) = O(h+)
P (d1|h+)
P (d1|h−)

If a piece of evidence is positive, the likelihood ratio is θ
1−θ . A negative

piece of evidence has a likelihood ratio of 1−θ
θ . Assume θ > 0.5, so positive

evidence makes the h+ more likely, and negative evidence makes h− more
likely.

For the second signal, Bayes’ rule prescribes

O(h+ | d1, d2) = O(h+ | d1)
P (d2|h+, d1)
P (d2|h−, d1)

but since signals are conditionally independent given H,

= O(h+ | d1)
P (d2|h+)
P (d2|h−)

Thus for every piece of new evidence dt, the agent multiplies her current
belief by the new likelihood ratio of dt.

O(h+ | d1..dt−1, dt) = O(h+ | d1..dt−1)
P (dt | h+)
P (dt | h−)

(3)

= O(h+ | d1..dt−1)

(
θ

1− θ

)dt

(4)

= O(h+)
∏

i=1..t

(
θ

1− θ

)di

by conditional indep. (5)
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Figure 8: Hopfield network that calculates a Bayesian point estimate of H (e.g.,
MAP on the linear threshold rule). Boxed nodes are observed variables; circles are
hidden.

5.3 Sidenote: Hopfield constraint satisfaction as probabilis-
tic inference

We can represent the agent’s reasoning as a very simple Hopfield network.
Each node represents a variable. There is only one updatable node (hidden
variable) H. Each node Di is an observed variable, with its state clamped to
+1 or −1, and is connected only to H. All H-Di links have uniform weight
w. Note the input activation is the same as the posterior log-odds of h+ if
w = log θ

1−θ , so wd+
i = log θ

1−θ and wd−i = log 1−θ
θ :

aH = biasH +
∑

i

wdi

log O(h+ | ~d) = log O(h+) +
∑

i

log
P (di | h+)
P (di | h−)

If aH > 0, the posterior belief in H is tilted towards h+. If we had to pick
one value of H to believe in, the most likely value is h+. Thus the linear
threshold update rule xH := sign(aH) picks the maximum posterior value of
H, called the MAP estimate: xH = arg maxh P (h | ~d). (“MAP” helpfully
stands for “maximum a posteriori.”) A version of this Bayesian view of
input activation terms is documented in Hinton and Sejnowski (1983) and
reviewed in McClelland (1998); see also Jordan (1995).

This is only a small illustration of the relationship between probabil-
ity and neural networks. The probabilistic semantics of weights in neural
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networks becomes more complex for symmetric networks and multilayered
networks.

5.4 Behavioral signal misperception model

Rabin and Schrag (1999) construct a behavioral model of evidence assimila-
tion bias through signal misperception. A biased agent does Bayes updates,
except when her prior is tilted in one direction; in that case, she may mis-
perceive a contradictory signal as actually supporting the prior. The biased
agent perceives binary signals δi ∈ {δ+, δ−} that have a q probability of be-
ing mistaken in the biased case, but perfectly correspond when confirming
the agent’s prior bias. For when the agent’s prior is tilted toward h+ (that
is, P (h+|d1..dt−1) > 0.5):

P (δ+
t | d

+
t ) = 1 and P (δ−t | d

+
t ) = 0

P (δ−t | d
−
t ) = 1− q and P (δ−t | d

−
t ) = q

Thus the sequence of perceived signals δt are not conditionally independent
given H, so the agent’s beliefs depend on the order of true dt signals. Rabin
and Schrag go on to demonstrate various facts about biased agents, such as
that they tend to be overconfident, and that an infinite sequence of signals
does not guarantee they will arrive at the correct conclusion. These are
interesting findings, but I am interested in an explanation of this bias.

This model does suggest a simple definition of evidence assimilation bias
as a deviation from Bayesian updating. Since the evidence interpretation
problem I present is multivariate, Rabin and Schrag’s setup cannot be di-
rectly applied. However, if negative evidence against the currently favored
hypothesis fails to be counted correctly, we say bias exists.

5.5 Problem #2: Inference from interpretable evidence

As before, a sequence of conditionally independent pieces of evidence Di

correspond with the value of H at probability θ > 0.5. However, each piece
of evidence could potentially be explained away by a mediating variable
Bi ∈ {bY , bN}. If Bi is Y , the evidence is believed/credible, so it does
correlate at probability θ with H. But bN explains away the evidence — the
study was conducted poorly, the source is not credible, we misread/misheard
it, etc. We should not believe the evidence. In that case, d+

i occurs at
uniform probability 1/2: it is completely non-informative about H. For
convenience, we will often call Bi “credibility,” though it could refer to
number of factors affecting the evaluation of the evidence. Like H, the Bi
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are hidden: it is impossible to know for sure whether a piece of evidence
can be trusted, but you can make judgments from all the evidence available.
Finally, their influence is local: each Bi only affects that Di.

Specifically, each conditional distribution is

P (d+
i | h

+bY
i ) = θ

P (d+
i | h

−bY
i ) = 1− θ

P (d+
i | h

+bN
i ) = 1/2

P (d+
i | h

−bN
i ) = 1/2

Given the observed evidence ~d, one problem is to infer a distribution over
the hidden variables (H,B1, ..., Bn). Another problem is to compute a point
estimate (h, b1..bn), e.g. the MAP estimate. To do either of these tasks, we
need to work with a representation of the joint distribution P (H, ~B, ~D).
Given the dependency relationships between the variables, we can com-
pactly and illustratively represent the distribution as a directed probabilistic
graphical model, more often called a Bayesian network (Koller and Fried-
man, 2006; Murphy, 1998; Pearl, 1988). A BN has two components: (1) a
directed acyclic graph representing qualitative dependencies between vari-
ables, and (2) a set of conditional distributions for each child given on its
parents.

Figure 9: Directed and undirected graphs, i.e. Bayesian network and Markov
random field, for the evidence interpretation problem. (a) The BN’s directed links
indicate direct conditional dependence or causality. (b) The MRF’s undirected links
document all possible direct probabilistic influences, including explaining away.

H

d+
B

d+
B

d–
B

(a)

H

d+B

d+
B

d–

B

(b)
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The DAG is shown in Figure 9. Arrows can sometimes be interpreted
as causality; we only take them to denote local conditional dependencies.
The graph’s semantics are defined as the local Markov property : a node
is conditionally independent of its non-descendants given its parents. This
allows a BN’s joint distribution over nodes ~X to be factorized as the product
of local conditional distributions P ( ~X) =

∏
i P (Xi|Pa(Xi)), where Pa(.)

denotes a node’s immediate parents.
With the notation A ⊥ B | Z meaning A and B are conditionally inde-

pendent given Z, this graph encodes a number of conditional independencies,
including:

• H ⊥ Bi and Bi ⊥ Bj : the hypothesis and credibilities are a priori
(marginally) independent.

• BiDi ⊥ BjDj |H: credibility/evidence joint pairs occur independently
given a hypothesis.

This problem is interesting for the relationships that are not indepen-
dent. Note the v-structures: H → Di ← Bi. Since H and Bi are root nodes,
they are marginally independent. However, they are conditionally depen-
dent upon observing di. For example, a positive d+

i causes a correlation
between its credibility Bi and one’s belief in h+: if we have seen positive
evidence, it is unlikely the evidence is credible but the hypothesis is false, or
vice-versa. An intuitive way to think of this is that probabilistic influence
flows in the direction of the links, but is “blocked off” by an observed node.
Thus the influence from Bi, flows down to the blocked-off di, then flows up
out of the v-structure to H. (This intutition is formalized in the Bayes-Ball
algorithm (Shachter, 1998).)9

Thus problematic dependencies include:

• H 6⊥ Bi |Di: Your belief in H affects your assessment of di’s credibility.

• Bi 6⊥ Bj | Di, Dj : The credibilities of different pieces of evidence affect
one another (because they affect your belief in H).

9This model implements “explaining away” through the Bi variables, but the term “ex-
plaining away” often refers to an endogenous effect arising in disjunction-like v-structures.
To use an oft-repeated example: R is whether it rained last night, S is whether the sprin-
kler was left on, and W is whether the lawn is now wet. (Network: R → W ← S.) R
and S are conditionally dependent given W . For example, given the grass is wet, learning
that it rained last night decreases your belief the sprinkler was left on, because the rain
explains away the fact the lawn is wet.
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So all hidden variables H,B1..Bn are conditionally dependent given the
observations ~d. This is the crux of the problem: the impact of observed
evidence di on H depends on how you interpret it (Bi), but how you inter-
pret it depends on H and thus the interpretation of other evidence. Simon
et al. (2004) seem to have something like this in mind when they declare
humans do not use “unidirectional” reasoning; but fortunately, it is possible
to deploy Bayesian reasoning to solve this problem.

Finally, to complete the specification of the distribution we use the condi-
tional distributions for each node, given its immediate parents. These P (H),
P (Bi), and P (Di|HBi) tables together define a joint probability distribution
over all variables H, ~B, ~D:

P (H, ~B, ~D) = P (H)
∏

i

P (Bi)
∏

i

P (Di|HBi)

5.6 Exact inference solution

We want to compare optimal Bayesian behavior to approximate algorithms,
so we first we compute the hidden distributions via exact Bayesian infer-
ence. We can solve the problematic dependencies by marginalizing out root
nodes as needed; this procedure is more generally formalized as the variable
elimination and message passing algorithms (Pearl, 1988).

Using the conditional independence assumptions, it is convenient to cal-
culate the posterior of H:

P (h+|~d) = P (h+) P (~d|h+) / P (~d) by Bayes’ rule (6)

= P (h+)
1

P (~d)

∏
i

P (di|h+) by local Markov property (7)

= P (h+)
1

P (~d)

∏
i

∑
bi∈{Y,N}

P (di|h+, bi) P (bi) (8)

O(h+|~d) = O(h+)
∏

i

∑
bi

P (di|h+, bi) P (bi)∑
bi

P (di|h−, bi) P (bi)
(9)

O(h+|~d) = O(h+)
∏

i

(
θ P (bY

i ) + 1
2P (bN

i )
(1− θ) P (bY

i ) + 1
2P (bN

i )

)di

(10)

Contrast to the exact inference solution for the problem without credi-
bilities (Equation 5), where the likelihood ratio is

(
θ

1−θ

)di . By summing out
each prior P (Bi), it is apparent that each evidence’s likelihood P (di|h+)
has been moderated towards 1/2 by the chance that bi is N . That is, this
solution takes into account the chance the evidence is not reliable.

24



5.7 Bias in local MAP search

A Bayesian updater computes and re-computes the distribution over all
hidden parameters (H,B1..Bn). This doesn’t require just a marginal distri-
bution over each parameter, but rather a distribution over all combinations
of parameters. The state space of the hidden vector is the cross-product
dom(H) ×

∏
i dom(Bi); for our binary variables, this is size 2n+1. For this

particular problem with simple uniform conditional probabilities, there may
be a simpler representation with smaller storage requirements; however, it
seems that in general, belief networks among thousands of beliefs with com-
plex interconnections, storing an entire joint distribution grows exponen-
tially in the number of hidden variables.

A less memory-intensive problem is to store only one particular instan-
tiation of the hidden parameters — that is, a single belief vector (h, b1..bn).
This assumes people remember only categorically: evidence i was either
credible or not, the hypothesis is either true or not, etc.10 The most likely
explanation for ~d is the MAP estimate

arg max
h,~b

P (h,~b|~d)

The belief revision problem is to update this vector as new evidence comes
in. A simple local MAP search algorithm to accomplish this is coordinate
ascent on the posterior: iterate through the elements of (h, b1..bn) and inde-
pendently optimize each in turn, and continue iterating until no more such
updates can be made. Note that optimizing the posterior with regards to
h,~b is the same as optimizing the joint with regard to those two variables:

arg max
h,~b

P (h,~b|~d) = arg max
h,~b

P (h,~b|~d)P (~d) = arg max
h,~b

P (h,~b, ~d)

= arg max
h,~b

P (h)
∏

i

P (bi)P (d|h, bi)

The only term that is a function of bi is P (bi)P (di|h, bi). The only terms
that are function of h are P (h)

∏
i P (d|h, bi). Thus to individually optimize

each one, we can drop out all other terms:

bi := arg max
bi

P (bi)P (di|h, bi) (11)

h := arg max
h

P (h)
∏

i

P (di|h, bi) (12)

10 Even if people can store distributions over each of these, a distribution over joint
combinations seem unreasonable; Section 5.8 argues per-variable distributions would en-
counter the same biases as found in local MAP search.
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This demonstrates the local properties of a graphical network. Each
bi only has to be optimized with regards to the local triad of (h, bi, di).
Similarly, h can ignore the bi root prior distributions.

This can also be seen when viewing the MAP inference problem as a soft
constraint satisfaction problem, a la the Hopfield networks from Section 4.
The log probability is the sum of single and three-way binary constraints:

log P (h,~b, ~d) = log P (h) +
∑

i

log[P (bi) P (di|h, bi)] (13)

−E(h,~b, ~d) = φ0(h) +
∑

i

φi(h, bi, di) (14)

The consonance function is the log of the joint probability. To optimize
bi, we only need to look at φi, the only constraint involving bi. The undi-
rected graph representing these dependencies is shown in Figure 9, in which
a connection between two nodes means there exists a constraint function
φ involving both of them. (The representation of a probability distribu-
tion with an undirected graph and these constraint functions (“log clique
potentials”) is called a Markov random field, a.k.a Markov network.) This
suggests that all of the observations from Section 4 on Hopfield networks
could also apply to MAP search on probabilistic graphical networks.

Consider an agent updating a local MAP explanation with every new
piece of evidence. Assume all bi and h have uniform priors: P (b+

i ) =
0.5, P (h+) = 0.5. Thus the priors P (h) and P (bi) drop out of the argmax
Equations 11 and 12. The update rules are very simple:

bi :=

{
Y if h and di agree
N if they disagree

(15)

(Since θ > 1/2: agreeable evidence is more likely to be credible/true.)
(16)

h :=


h+ if there are are more (Y, +) than (Y,−) pairs
h− if there are are more (Y,−) than (Y, +) pairs
h if there are the same number

(17)

(Since only credible evidence is relevant; break ties with no change.)
(18)

The agent’s belief state is order-dependent and displays assimilation bias
effects. Consider the following example.
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Example An agent receives a sequence of positive and negative signals di,
each with an initially positive evaluation bY

i . Upon receiving each piece of
evidence, the agent searches for a local MAP explanation via the coordinate-
ascent rules described above.

With no evidence at t = 0 the initial assignment is (h+). Consider the
sequence of data ~d = (+,+,−,−,−). At t = 1 a new evidence/credibility
pair (Y, +) is added. The belief vector (h+, bY

1 ) is stable since neither variable
will change when selected for an update. bY

1 is locally stable: since h and
d1 agree, it is more likely that the evidence is credible than not. h+ is also
locally stable, since there is 1 piece of credible positive evidence and no
pieces of credible negative evidence.

t = 2 sees the addition of another credible, positive evidence pair (Y, +),
which results in the similarly stable belief (h+, bY

1 , bY
2 ). t = 3 adds a credible

negative pair (Y,−). This is not stable. The local MAP search tries to opti-
mize all variables in turn, but only b3 will be revised. It flips to N to explain
away the negative evidence. H stays positive since there are more positive
than negative instances. This is reasonable, since the negative evidence is
too weak at this point to revise that belief. The better explanation for the
evidence is that it is not credible. Finally, if b1 or b2 are assessed, they will
not flip either, since the best explanation for positive evidence is the that
they’re credible, given that H is true.

The process continues like so:

t = 2 h+ (Y, +)(Y,+)
t = 3 h+ (Y, +)(Y,+)(Y,−) receive new data

h+ (Y, +)(Y,+)(N,−) revise b3

t = 4 h+ (Y, +)(Y,+)(N,−)(Y,−) receive new data
h+ (Y, +)(Y,+)(N,−)(N,−) revise b4

t = 5 h+ (Y, +)(Y,+)(N,−)(N,−)(Y,−) receive new data
h+ (Y, +)(Y,+)(N,−)(N,−)(N,−) revise b5

If an agent continues receiving d− signals and (1) local MAP updates
only one node at a time, and (2) does all possible updates each time when
given evidence, then the agent will suffer from evidence assimilation bias.
The first few positive signals and the prior h+ set up the agent for evidence
assimilation bias: later negative signals will be explained away, even though
there are more negative signals than positive ones.

This is a bias because the agent has the wrong answer: it is stuck at a
local maximum on the posterior surface. If the agent was able to consider
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the entire vector of credibilities ~b, it could update to a higher posterior
estimate (bN

1 , bN
2 , bY

3 , bY
4 , bY

5 ...) where the positive signals are uncredible and
the negative signals are credible.

To more formally analyze this behavior, we note several facts.

Proposition Given the coordinate ascent procedure, at t ≥ 1 there are
just two local maxima for the belief vector ~x = (h, b1..bt), denoted ~x+ and
~x−:

~x+ =


h+

bY
i for i where di = +1

bN
i for i where di = −1

(19)

~x− =


h−

bN
i for i where di = +1

bY
i for i where di = −1

(20)

(21)

That is, either the agent believes the hypothesis and only positive evidence,
or the agent disbelieves the hypothesis and believes only the negative evi-
dence.

Proof: First note that ~x+ and ~x− are both local maxima. h cannot revise
because all the credible evidence favors its current state. None of the bi’s
can revise because they all conform to the current hypothesis; switching any
bi to a nonconformant status would decrease likelihood.

Furthermore, no other ~x vectors are local maxima. Say ~x has h+ but
there is a nonconforming evidence belief, either a positive evaluation of neg-
ative evidence, or negative evaluation of positive evidence. (1) Say some
bY
i has a negative d−i . This ~x is not stable, because bi would update to bN

i .
(Furthermore, it is possible that h could flip to h− if there was was sufficient
credible negative evidence.) The other possible nonconformant evidence be-
lief is (2) some bN

j is on a positive d+
j . This bj is similarly unstable. An

analogous argument holds for ~x with h− and nonconforming evidence beliefs.

Proposition Assume uniform P (bi) priors. After n signals, with n+ pos-
itive signals and n− negative signals, the globally optimal MAP ~x is ~x+

if
(n+ − n−) log 2θ > log O(h−)

That is, sufficiently many positive signals cause ~x+ to be better, since θ > 0.5
so log 2θ is positive.
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Proof: note that the joint probability of ~x+ and the evidence can be
broken down into the h+ prior times the probability of credible positive
evidence and noncredible negative evidence:

P (~x+, ~d) = P (h+)
∏

i

P (bi)P (di|bi, h
+)

P (~x+, ~d) = P (h+)
∏

i where d+
i

P (bY
i )P (d+

i |b
Y
i , h+)

∏
j where d−j

P (bN
i )P (d−i |b

N
i , h+)

Next: ~x+ is more likely than ~x− if

1 <
P (~x+|~d)

P (~x−|~d)

1 <
P (~x+, ~d)

P (~x−, ~d)

1 < O(h+)
∏

i where d+
i

O(bY
i )

P (d+
i |bY

i , h+)
P (d+

i |bN
i , h−)

∏
j where d−j

O(bN
j )

P (d−j |bN
j , h+)

P (d−j |bY
j , h−)

1 < O(h+)
∏

i where d+
i

P (d+
i |bY

i , h+)
P (d+

i |bN
i , h−)

∏
j where d−j

P (d−j |bN
j , h+)

P (d−j |bY
j , h−)

since uniform priors on bi

1 < O(h+)
∏

i where d+
i

θ

1/2

∏
j where d−j

1/2
θ

1 < O(h+)(2θ)(n
+−n−)

0 < log O(h+) + (n+ − n−) log 2θ

The key result of this section is that belief persistence bias is often possible:

Proposition (Possibility of persistence bias): Assume uniform P (h), P (bi).
Also assume the agent locally optimizes after learning each individual piece
of evidence through coordinate ascent, iterating through the ~x vector in the
order (h, b1..bt).

Then, given a set of n > 1 signals favoring the positive configuration
~x+ with both positive and negative signals, there exists an order of those
signals such that after learning all of them, the agent mistakenly believes ~x−.
That is, he takes positive evidence as noncredible, and negative evidence as
credible, i.e., exhibits belief persistence bias.
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Proof: Since the agent locally maximizes at every timestep, it turns out
the first signal completely determines future beliefs. If the negative evidence
comes first, t = 1 initially has (h+, (Y,−)) By updating h first, the agent
settles on ~x+ = (h−, Y ). Any future positive evidence will fail to revise h
back to h+, so will instead be taken as noncredible.

Thus the coordinate ascent search procedure has incredibly strong bias.
A sketch of smarter search procedures follows. They can have less bias, but
are still susceptible in various ways.

One way out of this bias is less local search. Say a more cognitively
empowered agent selects k variables at a time to optimize, and considers
all possible subsets size k as candidates for updating. Then the sequence
~d = (+,+,−,−,−) yielding the erroneous ~x+ = (h+, Y, Y, N,N,N) could
get properly flipped to the global maximum ~x− = (h−, N, N, Y, Y, Y ) with
just k = 3. But for a fixed value of k, just k + 2 prior instances makes it
impossible to update out of the wrong local maximum.

A second way out of the bias is less greedy search. Currently the agent
locally maximizes the MAP estimate every time a new piece of evidence
is presented. An agent that never optimizes bi’s, leaving them at bY , will
make the correct MAP estimate for H if all bi have the same prior, though
he may have many errors for the bi values. An agent sacrifices the most
likely explanations for the evidence in return for the best explanations on h.

Or say an agent wants the most likely explanation for b3 — say, d3 has
an important competing hypothesis to test. The agent should use bY for
all other beliefs, updating h accordingly, then assign bY to conform between
h and d3. The agent then has a decent evaluation of h involving almost
all the evidence, a poor evaluation of the evidence where much noncredible
evidence is believed, but will have a good estimate of b3.

Another alternative search procedure is stochastic exploration, in which
an agent may sometimes update a variable to the less likely state. This
allows exploration out of local maxima. This represents an open-minded
(or perhaps non-opinionated) agent willing to live with mixed evidence, and
therefore less coherent explanations for the world; his beliefs have less like-
lihood than the beliefs of the local searcher, but may be closer to the max-
imally likely state of beliefs (and, hopefully, closer to the true state of the
world.)

One form of stochastic exploration is Gibbs sampling: Given a current
belief vector ~x, to update some element xi, randomly choose xi := +1 at
probability P (x+

i |~x−i, ~d), else choose x := −1.11 That is, instead of choosing

11This is just the sampling component of the Gibbs sampling algorithm; the actual use
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the maximizing value of xi as in coordinate ascent, it probability matches
instead: if x+

i is much more likely than x−i , it probably chooses that, though
there is a chance to take the less likely option.

Thus if the agent is at the local maximum ~x+, when updating h it will
probably keep to h+, though there is a small chance of exploring to h−. If
that happened, the beliefs bi are more likely to flip to conform to disbelieving
the hypothesis. An agent that used stochastic exploration could explore to
~x−; with some sort of memory of the likelihood of previously seen ~x states, or
a combination of occasional stochastic exploration with local maximization,
the agent could find better local maxima.

However, there is still some amount of bias from the initial state. If the
order of evidence put the agent’s believed ~x in a suboptimal maximum, the
agent needs to get lucky in order to explore out of that maximum.

5.8 Psychologically plausible inference mechanisms

There are two attractions of modeling human psychology via approximate
Bayesian algorithms. Compared to optimal Bayesian models, this approach
allows much more flexibility to model phenomena in judgment and social
psychology, where findings of mistakes and inefficiencies are widespread.
Compared to ad hoc algorithms, the advantage is clear semantics and rich
interpretations for what people are doing. The advent of probabilistic graph-
ical models, popularized in AI during the 90’s, provides intuitive and sophis-
ticated frameworks to understand many types of problems in a probabilistic
fashion (Chater et al., 2006). Furthermore, the fast-growing literature in
computational statistics and Bayesian machine learning suggest many po-
tential algorithms as hypotheses to analyze for psychological plausibility and
to test experimentally.

Starting with the MAP search already developed, note that many psy-
chological factors can be interpreted as constraints or methods of MAP
search. For example, the number of variables an agent can simultaneously
optimize is bounded by its short-term memory capacity.

Where an agent searches may be guided by memory as well. Imperfect
recall implies it is hard to revise interpretations of old evidence. For exam-
ple, during a political campaign people update their beliefs about political
candidates based on various evidence, but afterwards, can only remember

of the algorithm is to calculate the entire distribution of ~x, since in the limit (Markov
chain steady state) it visits different ~x states at frequencies proportional to their joint

likelihood P (~x|~d) (MacKay, 2003; Geman and Geman, 1984). It seems unclear to what
extent this is psychologically plausible.
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their belief about the candidate, but not the evidence used to arrive at
that conclusion (the “paradox of the forgetful voter”; see Lodge and Taber
(2000)). That implies people can’t revisit old bi variables, suggesting belief
persistence bias will occur when assimilating contradictory evidence in the
future.

Human memory is associative: remembering certain beliefs or facts
makes it easier to bring related items to mind, or may even retrieve them
automatically. If a set of bi variables have strong associations with one an-
other, a person revising one may remember the others and be inclined to
revise them as well. Furthermore, locally optimizing a specific belief should
only depend on other beliefs that can be remembered at the time.

This has been posited as an explanation for “debriefing paradigm” exper-
iments. Ross, Lepper, and Hubbard (1975) had participants assess whether
supposed suicide notes were real or faked, and were then told whether they
were correct or not. Participants that had positive feedback thought their
skill at the task was high. After this was done, they were informed that
actually the feedback had been completely random. Participants that had
received positive feedback still believed they were relatively skilled at the
task. The associative recall explanation is that hearing the positive feed-
back reminds participants of other salient facts, such as their own skill at
empathy in other situations. Though the feedback evidence was neutralized,
when participants assess their skill at the task, those now-present memories
are used to form a positive assessment.12

For future work, memory is an interesting psychological mechanism to ex-
plore because it is relatively well-understood compared to certain other cog-
nitive processes (e.g. problem solving). For example, Mullainathan (2002)
extensively develops a model of a Bayesian updater with imperfect memory,
that could potentially be applied to evidence interpretation problems.

Many other mechanisms can be usefully interpreted as mechanisms for
the MAP search. Motivation and affect can be seen as exogenous factors that
guide the search. Some theories, such as cognitive dissonance, in fact view
them as the primary cause of consistency biases (Festinger, 1957; Kunda,
1990), though this paper shows that computational limitations are sufficient
to cause assimilation bias. It may be useful to view affect and motivation
as components of a Bayesian approximation algorithm.

As mentioned in Section 4, the environment can be seen as a force that
12In a similar vein, participants may construct causal explanations for fictional evidence,

which remain as valid reasons for their revised belief after debriefing (Anderson, Lepper,
and Ross, 1980).
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mediates attention, guiding the search. For example, consider Figure 2
depicting the tension of believing Catholicism, Republicanism, and hold-
ing views on abortion and the death penalty. Any assignment to these
four beliefs must violate one of the constraints. That is, likelihood of the
belief vector (Cath-true, Repub-true, abortion-bad, death-penalty-good) is
low because the joint pair (Catholicism-true, death-penalty-good) has a low
consonance — the Catholic church opposes the death penalty. However, if
the issue of abortion is much more commonly attended to than the issue of
the death penalty — say, for exogenous reasons it is more often reported
in the media — then the experienced likelihood is much higher, since the
negative constraint is rarely noticed.

The plausibility of MAP search can also be improved. The motivation
for the local MAP model in the previous section was that Bayes updating
the entire distribution over all possible (h, b1..bn) vectors was psychologi-
cally implausible due to the computational costs involved. Point estimates,
such as a MAP vector, have just a linear storage requirement, and thus are
computationally plausible.13

An immediate objection that was glossed over is that, while it is unrealis-
tic for people to store degrees of belief over all combinations of beliefs, surely
people can entertain shades of gray — e.g., store one degree of belief for each
variable (or, for non-binary variables, one distribution per variable). For ex-
ample, in the binary (H, ~B) inference example, people may search for a dif-
ferent estimate, the expected vector E[(H,B1..Bn)] = (E[H], E[B1]..E[Bn]).
Thus a person’s beliefs consist of the average estimates for each variable.
For the probabilistic interpretation of a Hopfield network, this formulation
is embodied in the continuous sigmoid update rule, which computes condi-
tional expectations xi := E[xi|~x−i, ~d]. This is still less information than a
probability measure over all joint ~x combinations; in particular, an average
value cannot adequately represent two extreme maxima such as ~x+ and ~x−,
which are exact opposites of one another, located at different corners of the
space. It would be interesting to investigate whether expectation updating
exhibits bias in similar ways to MAP updating.

In general, combinations of computing locally optimal values for some
hidden variables, and locally expected values for other hidden variables, are

13Note that with certain assumptions on the hidden distribution ~X, it could be possible
to efficiently store the distribution. If each Xi is real-valued and ~X is a multivariate Gaus-
sian, then it only takes n+n2 storage space to represent the mean vector and convariance
matrix, which together completely describe the distribution. If, as was implicitly assumed
in Section 5.5, the representation needs to handle inference for any arbitrary multivariate
distribution, such storage savings do not exist.
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forms of Expectation-Maximization algorithms (Neal and Hinton, 1998),
or more generally, variational methods (Jordan et al., 1999), which con-
verge to local optima but are not guaranteed to find the best solutions.
In fact, these algorithms can be seen as optimizing an approximating dis-
tribution Q( ~X|~d) that is a mathematically and computationally simpler
representation than P ( ~X|~d).14 For example, the continuous Hopfield rule
xi := tanh(

∑
j wijxj) optimally approximates a “mean field” distribution

Q(.) that only considers the interaction of average values of the variables,
instead of potentially complex interactions of different joint combinations
of them (see MacKay chs. 33, 42 (2003), as well as Jordan et al.). This
seems analogous to reasoning based on exemplars or typical cases. Find-
ing and testing optimal behavioral properties of psychologically plausible
approximate representations is an interesting possibility for future research.

14 Specifically, a variational algorithm updates ~X to minimize the relative entropy —
a sort of distance measure between probability distributions (Kullback and Leibler, 1951)

— between Q( ~X|~d) and P ( ~X|~d).
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