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What is calibration? When a model knows it’s wrong.

Everyone knows it’s impossible for NLP systems to resolve all ambiguity. That’s why we have probabilistic models.
Ambiguities should be passed down the pipeline. Why do we only evaluate the most-probable structure?

Models output probabilities, and good probabilities ought to match frequencies on test data.

We propose to evaluate calibration, as an alternative to single-structure accuracy.
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Figure 1: (a) A skewed distribution of predictions on whether a word has the NN tag (§4.2.2). Calibration curves produced Ca“bratlon dOeS not Imply perfeCt aCCUFacy

by equally-spaced binning with bin width equal to 0.02 (b) and 0.1 (c) can have wide confidence intervals. Adaptive binning I I I

(with 1000 points in each bin) (d) gives small confidence intervals and also captures the prediction distribution. The confidence Cal|brat|0n COUId _eXIS1_: at an}./ IeV.el Of accuracy

intervals are estimated as described in §3.1. Perfect accuracy implies calibration

We contribute a new(?) adaptive binning method, since g distributions are very skewed in NLP
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Figure 2: Calibration curve of (a) Naive Bayes and (b) lo- Figure 3: Calibration curves of (a) HMM, and (b) CRF, on (b)
gistic regression on predicting whether a tweet 1s a “happy” predictions over all POS tags. Figure 4: Calibration errors of HMM and CRF on predict-
tweet. ing (a) single-word tags and (b) two-consecutive-word tags.

Coreference ambiguity International relations event extraction

We want confidence intervals for event extraction.
Test case for coreference-dependent event extraction: international relations revents

Slight modification of Berkeley Coreference

model/system yields an exact sampling algorithm Russian troops were sighted ... and they attacked
Definition 2 (Antencedent coreference model and _ . , _
sampling algorithm). Entity affiliated with a country name is the agent of an “attack”.

—> Coreference propagates dependencies between noun phrase mentions.

e For: = 1..N, sample : :
P Re-run extractor on every coreference sample => integrates out coreference uncertainty.

ai ~ % exp(w (i, a, )

e Calculate the entity clusters as e := C'C'(a),
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whether two mentions belong to the same entity cluster.




