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Everyone knows it’s impossible for NLP systems to resolve all ambiguity.  That’s why we have probabilistic models.
Ambiguities should be passed down the pipeline.  Why do we only evaluate the most-probable structure?
Models output probabilities, and good probabilities ought to match frequencies on test data.
We propose to evaluate calibration, as an alternative to single-structure accuracy.
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Figure 4: Calibration errors of HMM and CRF on predict-
ing (a) single-word tags and (b) two-consecutive-word tags.
Lower errors are better. The last two columns in each graph
are the average calibration errors over the most common la-
bels.

We report results for the top 5 and 100 most fre-
quent tag pairs (Figure 4(b)). We observe a simi-
lar pattern as seen from the experiment on single
tags: the CRF is generally better calibrated than
the HMM, but the HMM does achieve better cali-
bration errors in 29 out of 100 categories.

These tagging experiments illustrate that, de-
pending on the application, different models can
exhibit different levels of calibration.

5 Coreference resolution

We examine a third model, a probabilistic model
for within-document noun phrase coreference,
which has an efficient sampling-based inference
procedure. In this section we introduce it and ana-
lyze its calibration, in preparation for the next sec-
tion where we use it for exploratory data analysis.

5.1 Antecedent selection model
We use the Berkeley coreference resolution sys-
tem (Durrett and Klein, 2013), which was origi-
nally presented as a CRF; we give it an equivalent
a series of independent logistic regressions (see
appendix for details). The primary component of
this model is a locally-normalized log-linear dis-
tribution over clusterings of noun phrases, each
cluster denoting an entity. The model takes a fixed
input of N mentions (noun phrases), indexed by i

in their positional order in the document. It posits
that every mention i has a latent antecedent selec-
tion decision, a

i

2 {1, . . . , i� 1, NEW}, denoting

which previous mention it attaches to, or NEW if it
is starting a new entity that has not yet been seen
at a previous position in the text. Such a mention-
mention attachment indicates coreference, while
the final entity clustering includes more links im-
plied through transitivity. The model’s generative
process is:
Definition 2 (Antencedent coreference model and
sampling algorithm).

• For i = 1..N , sample
a

i

⇠

1
Z

i

exp(wTf(i, a
i

, x))

• Calculate the entity clusters as e := CC(a),
the connected components of the antecedent
graph having edges (i, a

i

) for i where a

i

6=

NEW.

Here x denotes all information in the document
that is conditioned on for log-linear features f .
e = {e1, ...e

M

} denotes the entity clusters, where
each element is a set of mentions. There are M en-
tity clusters corresponding to the number of con-
nected components in a. The model defines a joint
distribution over antecedent decisions P (a|x) =Q

i

P (a

i

|x); it also defines a joint distribution over
entity clusterings P (e|x), where the probability of
an e is the sum of the probabilities of all a vectors
that could give rise to it. In a manner similar to
a distance-dependent Chinese restaurant process
(Blei and Frazier, 2011), it is non-parametric in the
sense that the number of clusters M is not fixed in
advance.

5.2 Sampling-based inference
For both calibration analysis and exploratory ap-
plications, we need to analyze the posterior distri-
bution over entity clusterings. This distribution is
a complex mathematical object; an attractive ap-
proach to analyze it is to draw samples from this
distribution, then analyze the samples.

This antecedent-based model admits a very
straightforward procedure to draw independent e
samples, by stepping through Def. 2: indepen-
dently sample each a

i

then calculate the connected
components of the resulting antecedent graph.
By construction, this procedure samples from the
joint distribution of e (even though we never com-
pute the probability of any single clustering e).

Unlike approximate sampling approaches, such
as Markov chain Monte Carlo methods used in
other coreference work to sample e (Haghighi and
Klein, 2007), here there are no questions about
burn-in or autocorrelation (Kass et al., 1998).
Every sample is independent and very fast to

Slight modification of Berkeley Coreference 
model/system yields an exact sampling algorithm
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Figure 5: Coreference calibration curve for predicting
whether two mentions belong to the same entity cluster.

compute—only slightly slower than calculating
the MAP assignment (due to the exp and normal-
ization for each a

i

). We implement this algorithm
by modifying the publicly available implementa-
tion from Durrett and Klein.9

5.3 Calibration analysis
We consider the following inference query: for a
randomly chosen pair of mentions, are they coref-
erent? Even if the model’s accuracy is compara-
tively low, it may be the case that it is correctly
calibrated—if it thinks there should be great vari-
ability in entity clusterings, it may be uncertain
whether a pair of mentions should belong together.

Let `
ij

be 1 if the mentions i and j are predicted
to be coreferent, and 0 otherwise. Annotated data
defines a gold-standard `

(g)
ij

value for every pair
i, j. Any probability distribution over e defines a
marginal Bernoulli distribution for every proposi-
tion `

ij

, marginalizing out e:

P (`

ij

= 1 | x) =

X

e

1{(i, j) 2 e}P (e | x) (2)

where (i, j) 2 e is true iff there is an entity in e
that contains both i and j.

In a traditional coreference evaluation of the
best-prediction entity clustering, the model as-
signs 1 or 0 to every `

ij

and the pairwise precision
and recall can be computed by comparing them to
the corresponding `

(g)
ij

. Here, we instead compare
the q

ij

⌘ P (`

ij

= 1 | x, e) prediction strengths
against `(g)

ij

empirical frequencies to assess pair-
wise calibration, with the same binary calibration
analysis tools developed in §3 by aggregating pairs
with similar q

ij

values. Each q

ij

is computed by
averaging over 1,000 samples, simply taking the
fraction of samples where the pair (i, j) is coref-
erent.

9Berkeley Coreference Resolution System, version
1.1: http://nlp.cs.berkeley.edu/projects/

coref.shtml

We perform this analysis on the develop-
ment section of the English CoNLL-2011 data
(404 documents). Using the sampling inference
method discussed in §5.2, we compute 4.3 mil-
lions prediction-label pairs and measure their cali-
bration error. Our result shows that the model pro-
duces very well-calibrated predictions with less
than 1% CalibErr (Figure 5), though slightly
overconfident on middle to high-valued predic-
tions. The calibration error indicates that it is the
most calibrated model we examine within this pa-
per. This result suggests we might be able to trust
its level of uncertainty.

6 Uncertainty in Entity-based
Exploratory Analysis

6.1 Entity-syntactic event aggregation
We demonstrate one important use of calibration
analysis: to ensure the usefulness of propagating
uncertainty from coreference resolution into a sys-
tem for exploring unannotated text. Accuracy can-
not be calculated since there are no labels; but
if the system is calibrated, we postulate that un-
certainty information can help users understand
the underlying reliability of aggregated extractions
and isolate predictions that are more likely to con-
tain errors.

We illustrate with an event analysis application
to count the number of “country attack events”:
for a particular country of the world, how many
news articles describe an entity affiliated with that
country as the agent of an attack, and how does
this number change over time? This is a simpli-
fied version of a problem where such systems have
been built and used for political science analysis
(Schrodt et al., 1994; Schrodt, 2012; Leetaru and
Schrodt, 2013; Boschee et al., 2013; O’Connor
et al., 2013). A coreference component can im-
prove extraction coverage in cases such as “Rus-
sian troops were sighted . . . and they attacked . . . ”

We use the coreference system examined in §5
for this analysis. To propagate coreference un-
certainty, we re-run event extraction on multiple
coreference samples generated from the algorithm
described in §5.2, inducing a posterior distribution
over the event counts. To isolate the effects of
coreference, we use a very simple syntactic depen-
dency system to identify affiliations and events.
Assume the availability of dependency parses for
a document d, a coreference resolution e, and a
lexicon of country names, which contains a small
set of words w(c) for each country c; for example,
w(FRA) = {france, french}. The binary function

Calibration is surprisingly? good

of focusing on improving an NLP pipeline, we can
pass uncertainty on to exploratory purposes, and
try to highlight to a user where the NLP system
may be wrong, or where it can only imprecisely
specify a quantity of interest.

Finally, calibration can help error analysis. For
a calibrated model, the more uncertain a predic-
tion is, the more likely it is to be erroneous. While
coreference errors comprise only one part of event
extraction errors (alongside issues in parse qual-
ity, factivity, semantic roles, etc.), we can look at
highly uncertain event predictions to understand
the nature of coreference errors relative to our
task. We manually analyzed documents with a
50% probability to contain an “attack”ing country-
affiliated entity, and found difficult coreference
cases.

In one article from late 1990, an “attack” event
for IRQ is extracted from the sentence “But some
political leaders said that they feared that Mr. Hus-
sein might attack Saudi Arabia”. The mention
“Mr. Hussein” is classified as IRQ only when it
is coreferent with a previous mention “President
Saddam Hussein of Iraq”; this occurs only 50%
of the time, since in some posterior samples the
coreference system split apart these two “Hussein”
mentions. This particular document is addition-
ally difficult, since it includes the names of more
than 10 countries (e.g. United States, Saudi Ara-
bia, Egypt), and some of the Hussein mentions are
even clustered with presidents of other countries
(such as “President Bush”), presumably because
they share the “president” title. These types of er-
rors are a major issue for a political analysis task;
further analysis could assess their prevalence and
how to address them in future work.

7 Conclusion

In this work, we argue that the calibration of pos-
terior predictions is a desirable property of prob-
abilistic NLP models, and that it can be directly
evaluated. We also demonstrate a use case of
having calibrated uncertainty: its propagation into
downstream exploratory analysis.

Our posterior simulation approach for ex-
ploratory and error analysis relates to posterior
predictive checking (Gelman et al., 2013), which
analyzes a posterior to test model assumptions;
Mimno and Blei (2011) apply it to a topic model.

One avenue of future work is to investigate
more effective nonparametric regression methods
to better estimate and visualize calibration error,
such as Gaussian processes or bootstrapped kernel
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Figure 6: Number of documents with an “attack”ing coun-
try per 3-month period, and coreference posterior uncertainty
for that quantity. The dark line is the posterior mean, and
the shaded region is the 95% posterior credible interval. See
appendix for more examples.

density estimation.
Another important question is: what types of in-

ferences are facilitated by correct calibration? In-
tuitively, we think that overconfidence will lead
to overly narrow confidence intervals; but in what
sense are confidence intervals “good” when cal-
ibration is perfect? Also, does calibration help
joint inference in NLP pipelines? It may also assist
calculations that rely on expectations, such as in-
ference methods like minimum Bayes risk decod-
ing, or learning methods like EM, since calibrated
predictions imply that calculated expectations are
statistically unbiased (though the implications of
this fact may be subtle). Finally, it may be in-
teresting to pursue recalibration methods, which
readjust a non-calibrated model’s predictions to
be calibrated; recalibration methods have been de-
veloped for binary (Platt, 1999; Niculescu-Mizil
and Caruana, 2005) and multiclass (Zadrozny and
Elkan, 2002) classification settings, but we are
unaware of methods appropriate for the highly
structured outputs typical in linguistic analysis.
Another approach might be to directly constrain
CalibErr = 0 during training, or try to reduce it
as a training-time risk minimization or cost objec-
tive (Smith and Eisner, 2006; Gimpel and Smith,
2010; Stoyanov et al., 2011; Brümmer and Dod-
dington, 2013).

Calibration is an interesting and important prop-
erty of NLP models. Further work is necessary to
address these and many other questions.

We want confidence intervals for event extraction.
Test case for coreference-dependent event extraction: international relations revents

          Russian troops were sighted … and they attacked

Entity affiliated with a country name is the agent of an “attack”.
Coreference propagates dependencies between noun phrase mentions.
Re-run extractor on every coreference sample => integrates out coreference uncertainty.
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Figure 5: Coreference calibration curve for predicting
whether two mentions belong to the same entity cluster.

compute—only slightly slower than calculating
the MAP assignment (due to the exp and normal-
ization for each a

i

). We implement this algorithm
by modifying the publicly available implementa-
tion from Durrett and Klein.9

5.3 Calibration analysis
We consider the following inference query: for a
randomly chosen pair of mentions, are they coref-
erent? Even if the model’s accuracy is compara-
tively low, it may be the case that it is correctly
calibrated—if it thinks there should be great vari-
ability in entity clusterings, it may be uncertain
whether a pair of mentions should belong together.

Let `
ij

be 1 if the mentions i and j are predicted
to be coreferent, and 0 otherwise. Annotated data
defines a gold-standard `

(g)
ij

value for every pair
i, j. Any probability distribution over e defines a
marginal Bernoulli distribution for every proposi-
tion `

ij

, marginalizing out e:

P (`

ij

= 1 | x) =

X

e

1{(i, j) 2 e}P (e | x) (2)

where (i, j) 2 e is true iff there is an entity in e
that contains both i and j.

In a traditional coreference evaluation of the
best-prediction entity clustering, the model as-
signs 1 or 0 to every `

ij

and the pairwise precision
and recall can be computed by comparing them to
the corresponding `

(g)
ij

. Here, we instead compare
the q

ij

⌘ P (`

ij

= 1 | x, e) prediction strengths
against `(g)

ij

empirical frequencies to assess pair-
wise calibration, with the same binary calibration
analysis tools developed in §3 by aggregating pairs
with similar q

ij

values. Each q

ij

is computed by
averaging over 1,000 samples, simply taking the
fraction of samples where the pair (i, j) is coref-
erent.

9Berkeley Coreference Resolution System, version
1.1: http://nlp.cs.berkeley.edu/projects/

coref.shtml

We perform this analysis on the develop-
ment section of the English CoNLL-2011 data
(404 documents). Using the sampling inference
method discussed in §5.2, we compute 4.3 mil-
lions prediction-label pairs and measure their cali-
bration error. Our result shows that the model pro-
duces very well-calibrated predictions with less
than 1% CalibErr (Figure 5), though slightly
overconfident on middle to high-valued predic-
tions. The calibration error indicates that it is the
most calibrated model we examine within this pa-
per. This result suggests we might be able to trust
its level of uncertainty.

6 Uncertainty in Entity-based
Exploratory Analysis

6.1 Entity-syntactic event aggregation
We demonstrate one important use of calibration
analysis: to ensure the usefulness of propagating
uncertainty from coreference resolution into a sys-
tem for exploring unannotated text. Accuracy can-
not be calculated since there are no labels; but
if the system is calibrated, we postulate that un-
certainty information can help users understand
the underlying reliability of aggregated extractions
and isolate predictions that are more likely to con-
tain errors.

We illustrate with an event analysis application
to count the number of “country attack events”:
for a particular country of the world, how many
news articles describe an entity affiliated with that
country as the agent of an attack, and how does
this number change over time? This is a simpli-
fied version of a problem where such systems have
been built and used for political science analysis
(Schrodt et al., 1994; Schrodt, 2012; Leetaru and
Schrodt, 2013; Boschee et al., 2013; O’Connor
et al., 2013). A coreference component can im-
prove extraction coverage in cases such as “Rus-
sian troops were sighted . . . and they attacked . . . ”

We use the coreference system examined in §5
for this analysis. To propagate coreference un-
certainty, we re-run event extraction on multiple
coreference samples generated from the algorithm
described in §5.2, inducing a posterior distribution
over the event counts. To isolate the effects of
coreference, we use a very simple syntactic depen-
dency system to identify affiliations and events.
Assume the availability of dependency parses for
a document d, a coreference resolution e, and a
lexicon of country names, which contains a small
set of words w(c) for each country c; for example,
w(FRA) = {france, french}. The binary function
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Figure 1: (a) A skewed distribution of predictions on whether a word has the NN tag (§4.2.2). Calibration curves produced
by equally-spaced binning with bin width equal to 0.02 (b) and 0.1 (c) can have wide confidence intervals. Adaptive binning
(with 1000 points in each bin) (d) gives small confidence intervals and also captures the prediction distribution. The confidence
intervals are estimated as described in §3.1.

tion error estimate. Since we use bin sizes of at
least � � 200 in our experiments, the central limit
theorem justifies these approximations. We report
all calibration errors along with their 95% confi-
dence intervals calculated by Algorithm 2.7

3.3 Visualizing calibration
In order to better understand a model’s
calibration properties, we plot the pairs
(p̂1, q̂1), (p̂2, q̂2), · · · , (p̂T , q̂T ) obtained from
the adaptive binning procedure to visualize the
calibration curve of the model—this visualization
is known as a calibration or reliability plot. It
provides finer grained insight into the calibra-
tion behavior in different prediction ranges. A
perfectly calibrated curve would coincide with
the y = x diagonal line. When the curve lies
above the diagonal, the model is underconfident
(q < p

q

); and when it is below the diagonal, the
model is overconfident (q > p

q

).
An advantage of plotting a curve estimated from

fixed-size bins, instead of fixed-width bins, is that
the distribution of the points hints at the refinement
aspect of the model’s performance. If the points’
positions tend to cluster in the bottom-left and top-
right corners, that implies the model is making
more refined predictions.

4 Calibration for classification and
tagging models

Using the method described in §3, we assess the
quality of posterior predictions of several classi-
fication and tagging models. In all of our exper-

7A major unsolved issue is how to fairly select the bin
size. If it is too large, the curve is oversmoothed and calibra-
tion looks better than it should be; if it is too small, calibra-
tion looks worse than it should be. Bandwidth selection and
cross-validation techniques may better address this problem
in future work. In the meantime, visualizations of calibration
curves help inform the reader of the resolution of a particular
analysis—if the bins are far apart, the data is sparse, and the
specific details of the curve are not known in those regions.

iments, we set the target bin size in Algorithm 1
to be 5,000 and the number of samples in Algo-
rithm 2 to be 10,000.

4.1 Naive Bayes and logistic regression
4.1.1 Introduction
Previous work on Naive Bayes has found its prob-
abilities to have calibration issues, in part due
to its incorrect conditional independence assump-
tions (Niculescu-Mizil and Caruana, 2005; Ben-
nett, 2000; Domingos and Pazzani, 1997). Since
logistic regression has the same log-linear repre-
sentational capacity (Ng and Jordan, 2002) but
does not suffer from the independence assump-
tions, we select it for comparison, hypothesizing
it may have better calibration.

We analyze a binary classification task of Twit-
ter sentiment analysis from emoticons. We col-
lect a dataset consisting of tweets identified by the
Twitter API as English, collected from 2014 to
2015, with the “emoticon trick” (Read, 2005; Lin
and Kolcz, 2012) to label tweets that contain at
least one occurrence of the smiley emoticon “:)”
as “happy” (y = 1) and others as y = 0. The
smiley emoticons are deleted in positive examples.
We sampled three sets of tweets (subsampled from
the Decahose/Gardenhose stream of public tweets)
with Jan-Apr 2014 for training, May-Dec 2014 for
development, and Jan-Apr 2015 for testing. Each
set contains 10

5 tweets, split between an equal
number of positive and negative instances. We
use binary features based on unigrams extracted
from the twokenize.py8 tokenization. We use the
scikit-learn (Pedregosa et al., 2011) implementa-
tions of Bernoulli Naive Bayes and L2-regularized
logistic regression. The models’ hyperparameters
(Naive Bayes’ smoothing paramter and logistic re-
gression’s regularization strength) are chosen to

8
https://github.com/myleott/

ark-twokenize-py

What is calibration?  When a model knows it’s wrong.

qi ⌘ P (yi = 1 | xi, ✓)

pq ⌘ Frac. of yi = 1 among all i where qi = q

q:  a posterior probability (prediction)

p:  an empirical frequency of the label

We contribute a new(?) adaptive binning method, since q distributions are very skewed in NLP
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Figure 4: Calibration errors of HMM and CRF on predict-
ing (a) single-word tags and (b) two-consecutive-word tags.
Lower errors are better. The last two columns in each graph
are the average calibration errors over the most common la-
bels.

We report results for the top 5 and 100 most fre-
quent tag pairs (Figure 4(b)). We observe a simi-
lar pattern as seen from the experiment on single
tags: the CRF is generally better calibrated than
the HMM, but the HMM does achieve better cali-
bration errors in 29 out of 100 categories.

These tagging experiments illustrate that, de-
pending on the application, different models can
exhibit different levels of calibration.

5 Coreference resolution

We examine a third model, a probabilistic model
for within-document noun phrase coreference,
which has an efficient sampling-based inference
procedure. In this section we introduce it and ana-
lyze its calibration, in preparation for the next sec-
tion where we use it for exploratory data analysis.

5.1 Antecedent selection model
We use the Berkeley coreference resolution sys-
tem (Durrett and Klein, 2013), which was origi-
nally presented as a CRF; we give it an equivalent
a series of independent logistic regressions (see
appendix for details). The primary component of
this model is a locally-normalized log-linear dis-
tribution over clusterings of noun phrases, each
cluster denoting an entity. The model takes a fixed
input of N mentions (noun phrases), indexed by i

in their positional order in the document. It posits
that every mention i has a latent antecedent selec-
tion decision, a

i

2 {1, . . . , i� 1, NEW}, denoting

which previous mention it attaches to, or NEW if it
is starting a new entity that has not yet been seen
at a previous position in the text. Such a mention-
mention attachment indicates coreference, while
the final entity clustering includes more links im-
plied through transitivity. The model’s generative
process is:
Definition 2 (Antencedent coreference model and
sampling algorithm).

• For i = 1..N , sample
a

i

⇠

1
Z

i

exp(wTf(i, a
i

, x))

• Calculate the entity clusters as e := CC(a),
the connected components of the antecedent
graph having edges (i, a

i

) for i where a

i

6=

NEW.

Here x denotes all information in the document
that is conditioned on for log-linear features f .
e = {e1, ...e

M

} denotes the entity clusters, where
each element is a set of mentions. There are M en-
tity clusters corresponding to the number of con-
nected components in a. The model defines a joint
distribution over antecedent decisions P (a|x) =Q

i

P (a

i

|x); it also defines a joint distribution over
entity clusterings P (e|x), where the probability of
an e is the sum of the probabilities of all a vectors
that could give rise to it. In a manner similar to
a distance-dependent Chinese restaurant process
(Blei and Frazier, 2011), it is non-parametric in the
sense that the number of clusters M is not fixed in
advance.

5.2 Sampling-based inference
For both calibration analysis and exploratory ap-
plications, we need to analyze the posterior distri-
bution over entity clusterings. This distribution is
a complex mathematical object; an attractive ap-
proach to analyze it is to draw samples from this
distribution, then analyze the samples.

This antecedent-based model admits a very
straightforward procedure to draw independent e
samples, by stepping through Def. 2: indepen-
dently sample each a

i

then calculate the connected
components of the resulting antecedent graph.
By construction, this procedure samples from the
joint distribution of e (even though we never com-
pute the probability of any single clustering e).

Unlike approximate sampling approaches, such
as Markov chain Monte Carlo methods used in
other coreference work to sample e (Haghighi and
Klein, 2007), here there are no questions about
burn-in or autocorrelation (Kass et al., 1998).
Every sample is independent and very fast to
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Figure 2: Calibration curve of (a) Naive Bayes and (b) lo-
gistic regression on predicting whether a tweet is a “happy”
tweet.

maximize the F-1 score on the development set.

4.1.2 Results
Naive Bayes attains a slightly higher F-1 score
(NB 73.8% vs. LR 72.9%), but logistic regression
has much lower calibration error: less than half
as much RMSE (NB 0.105 vs. LR 0.041; Figure
2). Both models have a tendency to be undercon-
fident in the lower prediction range and overconfi-
dent in the higher range, but the tendency is more
pronounced for Naive Bayes.

4.2 Hidden Markov models and conditional
random fields

4.2.1 Introduction
Hidden Markov models (HMM) and linear chain
conditional random fields (CRF) are another com-
monly used pair of analogous generative and dis-
criminative models. They both define a posterior
over tag sequences P (y|x), which we apply to
part-of-speech tagging.

We can analyze these models in the binary cal-
ibration framework (§2-3) by looking at marginal
distribution of binary-valued outcomes of parts of
the predicted structures. Specifically, we examine
calibration of predicted probabilities of individual
tokens’ tags (§4.2.2), and of pairs of consecutive
tags (§4.2.3). These quantities are calculated with
the forward-backward algorithm.

To prepare a POS tagging dataset, we ex-
tract Wall Street Journal articles from the En-
glish CoNLL-2011 coreference shared task dataset
from Ontonotes (Pradhan et al., 2011), using the
CoNLL-2011 splits for training, development and
testing. This results in 11,772 sentences for train-
ing, 1,632 for development, and 1,382 for testing,
over a set of 47 possible tags.

We train an HMM with Dirichlet MAP us-
ing one pseudocount for every transition and
word emission. For the CRF, we use the L2-
regularized L-BFGS algorithm implemented in
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Figure 3: Calibration curves of (a) HMM, and (b) CRF, on
predictions over all POS tags.

CRFsuite (Okazaki, 2007). We compare an HMM
to a CRF that only uses basic transition (tag-tag)
and emission (tag-word) features, so that it does
not have an advantage due to more features. In
order to compare models with similar task perfor-
mance, we train the CRF with only 3000 sentences
from the training set, which yields the same accu-
racy as the HMM (about 88.7% on the test set).
In each case, the model’s hyperparameters (the
CRF’s L2 regularizer, the HMM’s pseudocount)
are selected by maximizing accuracy on the devel-
opment set.

4.2.2 Predicting single-word tags
In this experiment, we measure miscalibration of
the two models on predicting tags of single words.
First, for each tag type, we produce a set of 33,306
prediction-label pairs (for every token); we then
concatenate them across the tags for calibration
analysis. Figure 3 shows that the two models
exhibit distinct calibration patterns. The HMM
tends to be very underconfident whereas the CRF
is overconfident, and the CRF has a lower (better)
overall calibration error.

We also examine the calibration errors of the
individual POS tags (Figure 4(a)). We find that
CRF is significantly better calibrated than HMM
in most but not all categories (39 out of 47). For
example, they are about equally calibrated on pre-
dicting the NN tag. The calibration gap between
the two models also differs among the tags.

4.2.3 Predicting two-consecutive-word tags
There is no reason to restrict ourselves to model
predictions of single words; these models define
marginal distributions over larger textual units.
Next we examine the calibration of posterior pre-
dictions of tag pairs on two consecutive words in
the test set. The same analysis may be impor-
tant for, say, phrase extraction or other chunk-
ing/parsing tasks.
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Figure 2: Calibration curve of (a) Naive Bayes and (b) lo-
gistic regression on predicting whether a tweet is a “happy”
tweet.

maximize the F-1 score on the development set.

4.1.2 Results
Naive Bayes attains a slightly higher F-1 score
(NB 73.8% vs. LR 72.9%), but logistic regression
has much lower calibration error: less than half
as much RMSE (NB 0.105 vs. LR 0.041; Figure
2). Both models have a tendency to be undercon-
fident in the lower prediction range and overconfi-
dent in the higher range, but the tendency is more
pronounced for Naive Bayes.

4.2 Hidden Markov models and conditional
random fields

4.2.1 Introduction
Hidden Markov models (HMM) and linear chain
conditional random fields (CRF) are another com-
monly used pair of analogous generative and dis-
criminative models. They both define a posterior
over tag sequences P (y|x), which we apply to
part-of-speech tagging.

We can analyze these models in the binary cal-
ibration framework (§2-3) by looking at marginal
distribution of binary-valued outcomes of parts of
the predicted structures. Specifically, we examine
calibration of predicted probabilities of individual
tokens’ tags (§4.2.2), and of pairs of consecutive
tags (§4.2.3). These quantities are calculated with
the forward-backward algorithm.

To prepare a POS tagging dataset, we ex-
tract Wall Street Journal articles from the En-
glish CoNLL-2011 coreference shared task dataset
from Ontonotes (Pradhan et al., 2011), using the
CoNLL-2011 splits for training, development and
testing. This results in 11,772 sentences for train-
ing, 1,632 for development, and 1,382 for testing,
over a set of 47 possible tags.

We train an HMM with Dirichlet MAP us-
ing one pseudocount for every transition and
word emission. For the CRF, we use the L2-
regularized L-BFGS algorithm implemented in
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Figure 3: Calibration curves of (a) HMM, and (b) CRF, on
predictions over all POS tags.

CRFsuite (Okazaki, 2007). We compare an HMM
to a CRF that only uses basic transition (tag-tag)
and emission (tag-word) features, so that it does
not have an advantage due to more features. In
order to compare models with similar task perfor-
mance, we train the CRF with only 3000 sentences
from the training set, which yields the same accu-
racy as the HMM (about 88.7% on the test set).
In each case, the model’s hyperparameters (the
CRF’s L2 regularizer, the HMM’s pseudocount)
are selected by maximizing accuracy on the devel-
opment set.

4.2.2 Predicting single-word tags
In this experiment, we measure miscalibration of
the two models on predicting tags of single words.
First, for each tag type, we produce a set of 33,306
prediction-label pairs (for every token); we then
concatenate them across the tags for calibration
analysis. Figure 3 shows that the two models
exhibit distinct calibration patterns. The HMM
tends to be very underconfident whereas the CRF
is overconfident, and the CRF has a lower (better)
overall calibration error.

We also examine the calibration errors of the
individual POS tags (Figure 4(a)). We find that
CRF is significantly better calibrated than HMM
in most but not all categories (39 out of 47). For
example, they are about equally calibrated on pre-
dicting the NN tag. The calibration gap between
the two models also differs among the tags.

4.2.3 Predicting two-consecutive-word tags
There is no reason to restrict ourselves to model
predictions of single words; these models define
marginal distributions over larger textual units.
Next we examine the calibration of posterior pre-
dictions of tag pairs on two consecutive words in
the test set. The same analysis may be impor-
tant for, say, phrase extraction or other chunk-
ing/parsing tasks.
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