```
Demographic bias in social media
language analysis:
a case study of African-American English
```

Talk at Network Science Institute, Northeastern University, Dec. 14 2016

Brendan O'Connor (http://brenocon.com) College of Information and Computer Sciences University of Massachusetts Amherst

Computational Social Science

Computational Social Science

Official social data

Data collection Data analysis Data computation

100 BCE 1829 1890

1900

Computational Social Science

Data collection Data analysis Data computation

100 BCE

1829

1890

Semi-structured social data

Digitized behavior

Billions of users, messages/day

Digitized news Thousands of articles/day

Digitized archives Millions of books/century

1900

Language for social measurement P(SocAttr | Text,TextGen)

Society (SocialAttributes)

Data generation process

Writing (TextGenerator)

Text Data (Text)

<u>What to analyze:</u>

Social phenomena in social media datasets

- Political speech under Chinese censorship
- Events in international relations
- Social factors in language use

How to analyze:

NLP capabilities we need to do these better

• Part of speech tagging

- Entity extraction
- Syntactic, semantic parsing

What social bias exists in NLP models?

Linguistic/speech act diversity on Twitter

Official announcements

Business advertising

Links to blog and web content

Celebrity self-promotion

Status messages

Group conversation

Personal conversation

BritishMonarchy TheBritishMonarchy On 6 Jan: Changing the Guard at Buckingham Palace - Starts at approx 11am http://www.royal.gov.uk/G

17 hours ago

bigdogcoffee bigdogcoffee Back to normal hours beginning tomorrow......Monday-Friday 6am-10pm Sat/Sun 7:30am-10pm

2 Jan

crampell Catherine Rampell Casey B. Mulligan: Assessing the Housing Sector http://nyti.ms/hcUKK9

10 hours ago

THE_REAL_SHAQ THE_REAL_SHAQ fill in da blank, my new years shaqalution is _____

emax electronic max 1.1.11 - britons and americans can agree on the date for once. happy binary day!

1 Jan

4 Jan

_siddx3 Evelyn Santana RT @_LusciousVee: #EveryoneShouIdKnow Ima Finally Be 18 This Year ^.^

3 minutes ago

xoxoJuicyCee CeeCee'
@fxknnCelly aha kayy goodnightt (:

[Slide credit: Jacob Eisenstein]

Kids these days

- OK, so socially embedded language exists
- Any implications for natural language processing?

TweetNLP:

Part-of-speech tagging and word clusters for English-language Twitter

(available at http://www.cs.cmu.edu/~ark/TweetNLP/)

TweetMotif: Exploratory Search and Topic Summarization for Twitter. Brendan O'Connor, Michel Krieger, and David Ahn. ICWSM 2010.

Part-of-speech tagging for Twitter: Annotation, Features, and Experiments. Kevin Gimpel, Nathan Schneider, Brendan O'Connor, Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan and Noah A. Smith. ACL 2011.

Improved Part-of-Speech Tagging for Online Conversational Text with Word Clusters. Olutobi Owoputi, Brendan O'Connor, Chris Dyer, Kevin Gimpel, Nathan Schneider and Noah A. Smith. NAACL 2013.

NLP on social media's own terms

ikr	smh	he	asked	fir	уо	last
name	SO	he	can	add	u	on
fb	lololol					

- Is this "noisy text"?
- Any NLP system, starting with POS tagging, needs different models/resources than traditional written English
 - Annotate ~2300 tweets
 - Train word clusters on 56 million tweets, use as features

NLP on social media's own terms

w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains	"non-standard prepositions"
yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo	"interjections"
facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora	"online service names"
smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying	<pre>'hashtag-y interjections''??</pre>

What does it learn?

Orthographic normalizations

so s0 -so so- \$o /so //so

• Emoticons etc.

(Clusters/tagger useful for sentiment analysis: NRC-Canada SemEval 2013, 2014)

Subject-AuxVerb constructs

Clusters help POS tagging

- A little annotation + lots of data
- Unsupervised word representation learning (clusters, embeddings) is a crucial technique in NLP

• Where do nonstandard terms come from?

https://twitter.com/search?q=imma&src=typd&vertical=default&f=tweets

https://twitter.com/search?q=imma&src=typd&vertical=default&f=tweets

Society (SocialAttributes)

Data generation process

Writing (TextGenerator)

Text Data (Text)

<u>What to analyze:</u>

Social phenomena in social media datasets

- Political speech under Chinese censorship
- Events in international relations
- Social factors in language use

How to analyze:

NLP capabilities we need to do these better

• Part of speech tagging

- Entity extraction
- Syntactic, semantic parsing

What social bias exists in NLP models?

Demographic Dialectal Variation in Social Media: A Case Study of African-American English

Lisa Green

Brendan O'Connor

EMNLP 2016

What social bias exists in NLP models?

Dialect

he woke af smart af educated af daddy af coconut oil using af GOALS AF & shares food af

RETWEETS	LIKES 42	1	1 😰 🗿 🕻	¥ 🚯 🔞	@ 🌉
1:08 AM - 8	3 Jul 2016				
•	17 3	♥ 42	•••		

Dialect

SAE: *he* **is** *woke af*

he woke af smart af educated af daddy af coconut oil using af GOALS AF & shares food af

RETWEETS	LIKES 42		. 🔊 🎘 💥 🔊 🥘 🏼
1:08 AM - 8	Jul 2016		
•	t] 3	♥ 42	•••

Why is social media different?

- Internet speech?
- Pre-existing dialectal English?
 - Geographic patterns of word usage often reveal relationships to race, ethnicity etc.
 - African-American English in Twitter [Eisenstein 2013, Jorgensen et al. 2015, Jones 2015]

Youth, minorities on Twitter

[Pew Research]

P(use twitter | age)

Wednesday, December 14, 16

- From U.S. Census data and geo-located tweets: identify demographic-specific terms and messages via probabilistic model
- Validate African-American-associated corpus against linguistics literature on African-American English
- Investigate racial disparities in natural language processing tools

2+ Follow

he woke af smart af educated af daddy af coconut oil using af GOALS AF & shares food af

Bored af den my phone finna die!!!

2+ Follow

he woke af smart af educated af daddy af coconut oil using af GOALS AF & shares food af

block group 010730039001

Bored af den my phone finna die!!!

block group 010730058003

13

he woke af smart af educated af daddy af coconut oil using af GOALS AF & shares food af

2+ Follow

Bored af den my phone finna die!!!

he woke af smart af educated af daddy af

coconut oil using af GOALS AF & shares food af

2+ Follow

Bored af den my phone finna die!!!

 $\theta_{msg} \sim Dir(\alpha \pi)$

19

Wednesday, December 14, 16

he woke af smart af educated af daddy af coconut oil using af GOALS AF & shares food af

 m_1

Bored af den my phone finna die!!!

 m_2

he woke af smart af educated af daddy af coconut oil using af GOALS AF & shares food af

 m_1

Bored af den my phone finna die!!!

 m_2

Word	AA	Asian	Hisp.	White
woke	1	0	0	0
af	6	0	0	0
educated	0	0	0	1

he woke af smart af educated af daddy af coconut oil using af GOALS AF & shares food af

Bored af den my phone finna die!!!

 m_2

Word	AA	Asian	Hisp.	White
woke	1	0	0	0
af	6	0	0	0
educated	0	0	0	1

 m_1

Message	AA	Asian	Hisp.	White
m ₁	7	0	0	2
m ₂	2	0	1	1

he woke af smart af educated af daddy af coconut oil using af GOALS AF & shares food af

Bored af den my phone finna die!!!

 m_2

Word	AA	Asian	Hisp.	White
woke	1	0	0	0
af	6	0	0	0
educated	0	0	0	1

 m_1

Message	AA	Asian	Hisp.	White
m ₁	7	0	0	2
m ₂	2	0	1	1

User	AA	Asian	Hisp.	White
u ₁	9	0	1	3

23

Corpus creation and linguistic validation

• Beyond unigrams: creation of user-level topic-aligned corpora

Corpus creation and linguistic validation

- Beyond unigrams: creation of user-level topic-aligned corpora
- How do we linguistically validate them?
 - Lexicon
 - Phonology (Jones, Jorgensen et al.)
 - Syntax (Stewart)

Lexical analysis

• For every word in vocabulary w and topic k, calculate

$$r_k(w) = \frac{p(w|z=k)}{p(w|z\neq k)}$$

• Examine w where $r_{AA}(w) \ge 2$, $r_{white}(w) \ge 2$: AA- and whitealigned words

Lexical analysis

• For every word in vocabulary w and topic k, calculate

$$r_k(w) = \frac{p(w|z=k)}{p(w|z\neq k)}$$

- Examine w where $r_{AA}(w) \ge 2$, $r_{white}(w) \ge 2$: AA- and whitealigned words
- 79% of AA-aligned words, 58% of white-aligned words not in a standard English dictionary

Phonological analysis

 Calculate r_{AA}(w) for 31 phonological variants illustrated through nonstandard spellings

AAE	Ratio	SAE
sholl	1802.49	sure
iont	930.98	I don't
wea	870.45	where
talmbout	809.79	talking about
sumn	520.96	something

Phonological analysis

- Calculate r_{AA}(w) for 31 phonological variants illustrated through nonstandard spellings
- For 30/31 variants: *r* ≥ 1

AAE	Ratio	SAE
sholl	1802.49	sure
iont	930.98	I don't
wea	870.45	where
talmbout	809.79	talking about
sumn	520.96	something

Syntactic analysis

- Select 3 well-known AAE verbal markers
- Search for sequences of unigrams and POS tags

Construction	Example	
O-be/b-V	I be tripping bruh	
gone/gne/gon-V	Then she gon be	
	single Af	
done/dne-V	I done laughed so	
	hard that I'm weak	

30

Syntactic analysis

Historical vs. Online?

1914: reported speech

(Elizabeth Waties Allston Pringle, "A Woman Rice Planter," First-Person Narratives of the American South Collection)

dey b'longs to dat gent'man ahaid

Historical vs. Online?

1914: reported speech

(Elizabeth Waties Allston Pringle, "A Woman Rice Planter," First-Person Narratives of the American South Collection)

dey b'longs to dat gent'man ahaid

2013: Twitter data

$$\frac{P(\det | AA)}{P(\det | \neg AA)} = 5.9$$

$$\frac{P(\text{dey} \mid AA)}{P(\text{dey} \mid \neg AA)} = 6.8$$

Historical vs. Online?

1914: reported speech

(Elizabeth Waties Allston Pringle, "A Woman Rice Planter," First-Person Narratives of the American South Collection)

dey b'longs to dat gent'man ahaid

2013: Twitter data

$$\frac{P(\det | AA)}{P(\det | \neg AA)} = 5.9 \qquad \qquad \frac{P(\det | AA)}{P(\det | \neg AA)} = 6.8$$

POS taggers: standard vs. designed for Twitter

CoreNLP	dey/NN(PRP) b/NN(VBZ) '/Punct longs/NNS(VBZ) to/TO
	dat /VB(DT) gent/JJ '/Punct man/NN ahaid/VBN(RB)
ARK	dey/Pro b'longs/Verb to/Prep dat/Det gent'man/Noun ahaid/Adv

• Compare annotated parses to systems' output parses

- Compare annotated parses to systems' output parses
 - **WIRED** Google Has Open Sourced SyntaxNet, Its AI for Understanding Language

Announcing SyntaxNet: The World's Most Accurate Parser Goes Open Source

Thursday, May 12, 2016

Posted by Slav Petrov, Senior Staff Research Scientist

32

- Compare annotated parses to systems' output parses
- AAE-like tweets are much harder than SAE-like tweets

Parser	AA	Wh.	Difference
SyntaxNet	64.0 (2.5)	80.4 (2.2)	16.3 (3.4)

Recall for annotated edges for each message set, bootstrapped standard errors in parentheses.

33

- Compare annotated parses to systems' output parses
- AAE-like tweets are much harder than SAE-like tweets

Parser	AA	Wh.	Difference
SyntaxNet	64.0 (2.5)	80.4 (2.2)	16.3 (3.4)
CoreNLP	50.0 (2.7)	71.0 (2.5)	21.0 (3.7)

Recall for annotated edges for each message set, bootstrapped standard errors in parentheses.

• Language identification - key step in NLP pipelines

• Language identification - key step in NLP pipelines

```
>>> s = '''he woke af smart af educated af daddy af coconut oil using af
... GOALS AF & shares food af'''
>>> langid.classify(s)
('da', 0.9999999993212958)
>>> s = 'Bored af den my phone finna die!!!'
>>> langid.classify(s)
('da', 0.9999968001354156)
```

• Language identification - key step in NLP pipelines

	AA-Aligned	White-Aligned
langid.py	13.2%	7.6%

Proportion of messages classified as non-English

• Language identification - key step in NLP pipelines

	AA-Aligned	White-Aligned
langid.py	13.2%	7.6%
Twitter	24.4%	17.6%

Proportion of messages classified as non-English

- Solution: build ensemble classifier to augment langid.py
- Given a message, classifier:
 - Calculates langid.py's prediction
 - If prediction is English, return English
 - If not English, return English if our model's
 (AA + white + Hispanic) posterior probabilities ≥ 0.9
 - Otherwise, return langid.py's prediction

• Solution: build ensemble classifier to augment langid.py

Message set	langid.py	Ensemble
High AA	80.1%	99.5%
High White	96.8%	99.9%
General	88.0%	93.4%

Imputed recall of English messages for 2014 messages

- Develop a model leveraging demographic correlations to generate dialectal corpora
- Corpus reproduces well-known dialectal phenomena
- Demonstrate disparity in performance by two kinds of NLP tools
- Provide ensemble classifier augmenting existing tools with our model

NLP and social bias

- Natural language processing (NLP) resources are typically designed for standard English or other major languages
 - But non-standard languages correlates with social background
- How do social confounds affect other language technologies?
 - Sentiment measurement? Political science? Digital humanities?
 - Search? Translation?
- How to adapt NLP systems
- Online data from social processes reproduces social phenomena, and algorithms re-learn it