Statistical Text Analysis
for Social Science

Brendan O’Connor
Machine Learning Department
Carnegie Mellon University

Thesis defense presentation, Aug. 19,2014




SOCIAL SCIENCE

Computational Social Science
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¢ live life in the network. We check
\ N / our e-mails regularly, make mobile
phone calls from almost any loca-
tion, swipe transit cards to use public trans-
portation, and make purchases with credit
cards. Our movements in public places may be
captured by video cameras, and our medical
records stored as digital files. We may post blog
entries accessible to anyone, or maintain friend-
ships through online social networks. Each of
these transactions leaves digital traces that can
be compiled into comprehensive pictures of
both individual and group behavior, with the
potential to transform our understanding of our
lives, organizations, and societies.

The capacity to collect and analyze massive
amounts of data has transformed such fields as
biology and physics. But the emergence of a
data-driven “computational social science™ has
been much slower. Leading journals in eco-
nomics, sociology, and political science show
little evidence of this field. But computational
social science is occurring—in Internet compa-
nies such as Google and Yahoo, and in govern-

ment agencies such as the U.S. National Secur-
ity Agency. Computational social science could
become the exclusive domain of private com-
panies and government agencies. Alternatively,
there might emerge a privileged set of aca-
demic researchers presiding over private data
from which they produce papers that cannot be

A field is emerging that leverages the
capacity to collect and analyze data at a
scale that may reveal patterns of individual
and group behaviors.

critiqued or replicated. Neither scenario will
serve the long-term public interest of accumu-
lating, verifying, and disseminating knowledge.

What value might a computational social
science—based in an open academic environ-
ment—offer society, by enhancing understand-
ing of individuals and collectives? What are the
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Text as “‘Data’’?

Details Agreed on Nuclear Deal With Iran, Set to Start Jan. 20

PARIS — Iran and six world powers have agreed on how to put in place an accord that
would temporarily freeze much of Iran’s nuclear program, American and Iranian officials
said on Sunday. That accord would go into effect on Jan. 20. International negotiators
worked out an agreement in November to constrain much of Iran’s program for six months
so that diplomats would have time to pursue a more comprehensive follow-up accord. But
before the temporary agreement could take effect, negotiators had to work out the
technical procedures for carrying it out and resolve some of its ambiguities in concert with
the International Atomic Energy Agency.

Antigovernment Protesters Try to Shut Down Bangkok

BANGKOK — Antigovernment protesters seeking to block next month’s elections in
Thailand took over major roads in Bangkok on Sunday as they began their campaign to
shut down the city. In this vast metropolis of well over 10 million people, the protesters
were unlikely to paralyze all movement and commerce. But they vowed that by Monday
morning they would close busy intersections, make major government offices inaccessible
and besiege the homes of top officials in the administration of Prime Minister Yingluck
Shinawatra, whose party is most likely to win the general elections that are scheduled for
Feb. 2. “We have to shut down Bangkok,” said Ratchanee Saengarun, a protester who
stood in the middle of an intersection in the city. “This is our last resort.” By late Sunday,
protesters had blocked several roads using double-decker buses and sandbags, and had
diverted traffic.



http://www.nytimes.com/2013/11/25/world/middleeast/officials-say-the-toughest-work-on-irans-nuclear-program-still-lies-ahead.html
http://www.nytimes.com/2013/11/25/world/middleeast/officials-say-the-toughest-work-on-irans-nuclear-program-still-lies-ahead.html
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Statistical associations

® Jext exploration on document covariates

[O’Connor, 2014]
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How are X and Y related? (anscombe 1973)
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How are X and Y related? (anscombe 1973)

Pearson correlation
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assumes (z,y) ~ N(u,X)
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Scatterplot:
X = horizontal position Simple
y = vertical position Non-parametric(?)

Is there an analogue to the scatterplot, when text is a variable?




Linking and brushing

7 Fflea: #%% Scatterplot Matrix skk 7 08
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Is there an analogue to linking/brushing, when text is a variable?




Text and document covariates

® X: Text

® Discrete, high-dimensional (e.g. bag of words)

® Y: Document covariates (metadata)

® Time, author attributes, social context, geography,
community membership...

® Discrete or continuous

® | ower dimensional

® (Goal is exploratory data analysis:
first-cut insight into relationship(X,Y)

® Requirement: speed for interactivity




Demo
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[A] — [C]: words related to covariate query Q
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[C] — [D]: word-word associations
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KWIC (keyword-in-context)
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KWIC reveals word senses
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Covariate -- word analysis
direct PMI -Vs- topic model bottleneck

words

K topics

covariates

p( text | covariates ): Dirichlet-
Multinomial Regression, Author-Topic

® Feature selection Model, Labeled LDA, Structural Topic
Model ...

® Monroe et al. (2008) | |
p( text, covariates ): Supervised LDA,

MedLDA, GeoTM ...




Related work: Text Exploration

Voyant/Voyeur (Rockwell et al. 2010)
WordSeer (Shrikumar 201 3)

Jigsaw (Gorg et al. 201 3)

Topical Guide (Gardner et al. 201 0)

etc...




® QOther uses

® Figure out NLP models and parameters
(what should be a stopword?)

Select documents to read in an intelligent way
(by covariates)

® What variables to use in a2 model?

® |dentify coding errors in the data

® Extensions
® Structure from NLP tools

® [nteractive labeling and keyword query building
[King et al 2014]

Prototype available: http://brenocon.com/mte
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Text as “‘data’’?

Details Agreed on Nuclear Deal With Iran, Set to Start Jan. 20

PARIS — Iran and six world powers have agreed on how to put in place an accord that
would temporarily freeze much of Iran’s nuclear program, American and Iranian officials
said on Sunday. That accord would go into effect on Jan. 20. International negotiators
worked out an agreement in November to constrain much of Iran’s program for six months
so that diplomats would have time to pursue a more comprehensive follow-up accord. But
before the temporary agreement could take effect, negotiators had to work out the
technical procedures for carrying it out and resolve some of its ambiguities in concert with
the International Atomic Energy Agency.

Antigovernment Protesters Try to Shut Down Bangkok

BANGKOK — Antigovernment protesters seeking to block next month’s elections in
Thailand took over major roads in Bangkok on Sunday as they began their campaign to
shut down the city. In this vast metropolis of well over 10 million people, the protesters
were unlikely to paralyze all movement and commerce. But they vowed that by Monday
morning they would close busy intersections, make major government offices inaccessible
and besiege the homes of top officials in the administration of Prime Minister Yingluck
Shinawatra, whose party is most likely to win the general elections that are scheduled for
Feb. 2. “We have to shut down Bangkok,” said Ratchanee Saengarun, a protester who
stood in the middle of an intersection in the city. “This is our last resort.” By late Sunday,
protesters had blocked several roads using double-decker buses and sandbags, and had
diverted traffic.



http://www.nytimes.com/2013/11/25/world/middleeast/officials-say-the-toughest-work-on-irans-nuclear-program-still-lies-ahead.html
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Text as “‘data’’?

Details Agreed on Nuclear Deal With Iran, Set to Start Jan. 20
PARIS — Iran and six world powers have agreed on how to put in place an accord that
would temporarily freeze much of Iran’s nuclear program, American and Iranian officials
said on Sunday. That accord would go into effect on Jan. 20. International negotiators
worked out an agreement in November to constrain much of Iran’s program for six months
so that diplomats would have time to pursue a more comprehensive follow-up accord. But
before the temporary agreement could take effect, negotiators had to work out the
technical procedures for carrying it out and resolve some of its ambiguities in concert with

the International Atomic Energy Agency.
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Structure from text:
Semantic parsing
Information extraction

[e.g. MUC-3: Lehnert,Williams, Cardie, Riloff, Fisher 199 1]
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http://www.nytimes.com/2013/11/25/world/middleeast/officials-say-the-toughest-work-on-irans-nuclear-program-still-lies-ahead.html
http://www.nytimes.com/2013/11/25/world/middleeast/officials-say-the-toughest-work-on-irans-nuclear-program-still-lies-ahead.html

Event data through knowledge engineering

[Schrodt 1994, Leetaru and Schrodt 201 3]

Event classes

(~200)

Dictionary:
Verb patterns per event class
(~15000)

Extract events from news text

NE
QORI

Issue: Hard to maintain and adapt to

03 - EXPRESS INTENT TO COOPERATE
07 - PROVIDE AID
15 - EXHIBIT MILITARY POSTURE

191 - Impose blockade, restrict movement

not_ allow to_ enter ;mj 02 aug 2006
barred travel

block traffic from :ab 17 nov 2005
block road :hux 1/7/98

N_ewScientist

Charting Syria's civil war

Can a huge database of news stories help
peer through the fog of war? Political
scientists hope that it can — and maybe
even predict a conflict's course.

(.“
000000 O >
N2 RN ==
NN NN N

Number of events:

1t0 49
50 to 999
© 1000 to 4999

new domains



http://brenocon.com/tabari_cameo_verbs.html#03
http://brenocon.com/tabari_cameo_verbs.html#03
http://brenocon.com/tabari_cameo_verbs.html#07
http://brenocon.com/tabari_cameo_verbs.html#07
http://brenocon.com/tabari_cameo_verbs.html#15
http://brenocon.com/tabari_cameo_verbs.html#15

[O’Connor, Stewart, and Smith, 201 3]

Our inference process

LD weWV®  Data: twenty years of news articles
WORY

Natural Language Processing
"‘f_‘ _::_:____:__::-_;_;_ e

4 p

anixy

Event phrases of
actor interactions

British officials in Tehran and London have been meeting discretely with their Iranian counterparts

GBR IRN
& J

Probabilistic Graphical Model
Purely from textual data, jointly learns both

(I) Event class dictionaries (2) Political dynamics

arrive in, visit, meet with, travel to, leave,
hold with, meet, meet in, fly to, be in, arrive Israeli—-Palestinian Diplomacy
for talk with, say in, arrive with, head to, '
hold in, due in, leave for, make to, arrive to,

“diplomacy”

|

|

accuse, blame, say, break with, sever with, !
» . ,, |blameon, warn, call, attack, rule with, |
verbal conflict charge, say<—ccomp come from, say <—ccomp, |
|

|

suspect, slam, accuse government <—poss,

kill in, have troops in, die in, be in, wound
“ ol flict” in, have soldier in, hold in, kill in attack in, )
material contlict™ | o ain in, detain in, have in, capture in, stay “ | | | | i H-Fﬂ'“'r"““r"‘m‘““'fl-'rlm—

in, about <—pobj troops in, kill, have troops 1994 1997 2000 2002 2005 2007




Event phrases

“ISR meet with PSE”
P(w ="“meet with” | t, s=ISR, r=PSE)

Wl L e
I I

1995 2000 2005

Too sparse for human interpretability




Do word semantics cluster on social context?
g s=ISR, r=PSE N ( s=USA, r=FRA

‘t=Jul 15-21,2002) (t=]Jul 3-9,2006 (t= Feb 2-8,1998 | (t= Dec 22-28,2003)

say <-ccomp be to commit to travel <-xcomp meet with release with
release to strike consider welcome
take control of carry in meet with welcome by
occupy continue in meet with win

wound in reject meet with agree with
scuffle with fire at target in indict

be <-xcomp meet start around win from
meet with ratchet pressure on concern over
meet with shell win

arrest hit indict

\ \ \




Do word semantics cluster on social context?
g s=ISR, r=PSE N ( s=USA, r=FRA

‘t=Jul 15-21,2002) (t=]Jul 3-9,2006 (t= Feb 2-8,1998 | (t= Dec 22-28,2003)

say <-ccomp be to commit to travel <-xcomp meet with release with
release to strike consider welcome
take control of carry in meet with welcome by
occupy continue in meet with win

wound in reject meet with agree with
scuffle with fire at target in indict

be <-xcomp meet start around win from
meet with ratchet pressure on concern over
meet with shell win

arrest hit indict

g g g
g

Clustering approach: Mixed-membership models

99 ¢¢

(“topic models,” “admixtures”)




Contextual event class probabilities
g s=ISR, r=PSE 0 [ s=USA, r=FRA

es,r,t :I_l Hs,r,t — es,r,t — Hs,r,t —

| 2 | 2 | 2 | 2
(t=Jul 15-21,2002) (t=Jul 3-9,2006 (t= Feb 2-8,1998 | [ t= Dec 22-28,2003"

say <-ccomp be to commit to travel <-xcomp meet with release with
release to strike consider welcome
take control of carry in meet with welcome by
occupy continue in meet with win

wound in reject meet with agree with
scuffle with fire at target in indict

be <-xcomp meet start around win from
meet with ratchet pressure on concern over
meet with shell win

arrest hit indict

\\ J _J . .

Event class dictionaries &1 @9

agree with, arrest, be <-xcomp meet, carry in, commit to, concern over, consider, continue in, fire at target in, hit, indict,
meet with, occupy, ratchet pressure on, reject, release to, release with, say <-ccomp be to, scuffle with, shell,
start around, strike, take control of, travel <-xcomp meet with, welcome, welcome by, win, win from, wound in




Model

68,7°,t—1_>5s,7°,t_>

s Source
entity

r Receiver
entity

t Timestep

w Event
phrase

'

ns,r,t#’\

Hs.r,t

Event prior models

MI: independent contexts

M2: temporal smoothing
[Blei and Lafferty 2006, Quinn and Martin 2002]

Adjacent
» timestep

Bs,r,t ™~ N(ﬁs,r,t—la ]17-2) similariey
Ns rt ™ N(CM + Bs,r,ta Dlag[a%ai])
(Os,rt) 1k X eXP(Us,r,t,k)_
z ~ Mult(6s , )
w ~ Mult(¢, )

w ~ Mult(®0, .. )

> 80 million parameters




Learning: blocked Gibbs sampling

p(B,(n,0),01..0%,2,¢,b| w)

BS,T,t ~ N(ﬁs,r,t—l, ]ITQ)
Ns.rt ~ N(a =+ Bs i, Diag[a%.ﬂ%{])
(es,r,t)k X eXP(Us,r,t,k)
z ~ Mult(6s , )
w ~ Mult(¢, )
¢ ~ Dir(b)




Learning: blocked Gibbs sampling

p(B,(n,0),01..0%,2,¢,b| w)

Conjugate normal

Forward filter backward sampler (FFBS)

Linear dynamical system
[Carter and Kohn 1994,West and Harrison 1997] 55,7; o~ N ( 55 et T )

Logistic normal Ns.rt ™ N(CY + 5s,r,t7 Diag[O'
Metropolis-within-Gibbs, <
Laplace approximation proposal ,Ts X eXp(ns,r,t,k)

[Hoff 2003] ~ j_\/_:u:.t(es,”r‘,t)

Mult
Dirichlet-multinomial (¢Z)

Collapsed sampling < Dlr(b)
[Griffiths and Steyvers 2005] i

Slice sampling
[Neal 2003]

2 2
1--0 K

/)




Event classes: word posteriors

Most probable phrases in ¢y

arrive in, visit, meet with, travel to, leave, hold
with, meet, meet in, fly to, be in, arrive for talk
with, say in, arrive with, head to, hold in, due in,
leave for, make to, arrive to, praise

accuse, blame, say, break with, sever with, blame
on, warn, call, attack, rule with, charge,
say<—ccomp come from, say <—ccomp, suspect,
slam, accuse government <—poss, accuse agency
<—poss, criticize, 1dentify

kill in, have troops in, die in, be in, wound in, have
soldier in, hold in, kill in attack in, remain 1n,
detain in, have in, capture in, stay in, about <—pobj
troops in, kill, have troops <—partmod station 1n,
station in, injure in, invade, shoot in




Event classes: word posteriors

“diplomacy”

“verbal conflict”

“material conflict”

Most probable phrases in ¢y

arrive in, visit, meet with, travel to, leave, hold
with, meet, meet in, fly to, be in, arrive for talk
with, say in, arrive with, head to, hold in, due in,
leave for, make to, arrive to, praise

accuse, blame, say, break with, sever with, blame
on, warn, call, attack, rule with, charge,
say<—ccomp come from, say <—ccomp, suspect,
slam, accuse government <—poss, accuse agency
<—poss, criticize, 1dentify

kill in, have troops in, die in, be in, wound in, have
soldier in, hold in, kill in attack in, remain 1n,
detain in, have in, capture in, stay in, about <—pobj
troops in, kill, have troops <—partmod station 1n,
station in, injure in, invade, shoot in




Case study

meet with, sign with, praise, say with,
arrive in, host, tell, welcome, join, thank,
meet, travel to, criticize, leave, take to,
begin to, begin with, summon, reach
with, hold with

Israeli—PaIelstinian Diplomacy

A: Israel-Jordan Peace : C: U.S. Calls for West Bank
Treaty Withdrawal
B: Hebron Protocol | D: Deadlines for Wye River Peace
| Accord
E: Negotiations in Mecca
F: Annapolis Conference

S e e s o e s B

1994 1997 2000 2002 2005 2007




Evaluations

Society (SocialAttributes) Writing (TextGenerator) Text Data (Text)

Data ' " ! )_71, : ’L' . \_ V,‘f _ '- * e —
generathn = 'g s o, L7 B =074 G¥) HaTH
Process ‘ — -%;j

Inference
Inference

&
collection

v

Israeli—PaIelstinian Diplomacy

v  _ ,

1994 1997 2000 2002 2005 2007

Event datasets T

from political science
(Previous work) Evaluation: do these correlate?




Evaluations

Cluster impurity

2 3 4 5 10 20 50 100
Number of event classes

2 3 4 5 10 20 50 100
Number of event classes

Random null

M1: Indep. (s,r,t)

Lexicon /
Ontology

M2: Temp. smoothing .
reconstruction

Log. Reg.
M1: Indep. (s,r,t)

Real-world

M2: Temp. smoothing CoanICt .
reconstruction







Geographic lexical variation in Twitter

[Eisenstein, O’Connor, Smith, Xing 201 0]

Geographic topic model

—

r~T

User’s locations

(lat, lon) ~ N(ji,>,) from DPMM

0 ~ Dir(d)

2~ 0

w ~ exp (1)
b ~ N(@,bT)
Mkj ~ N(ng:; S%I)

“http:/mobile.twitter.com”
Would Like To Use Your
Current Location

Don’t Allow ) . 0"
Wwas "Looking to the Future

Gaussian mixture

User’s topics

have regional
variants

“basketball”

PISTONS KOBE
LAKERS game
DUKE NBA
CAVS STUCKEY
JETS KNICKS

“popular
music”’

album music
beats artist video
#LAKERS
ITUNES tour
produced vol

““daily life”

tonight shop
weekend getting
going chilling
ready discount
waiting iam

“emoticons’

:) haha:d:(;):p

xd :/ hahaha
hahah

‘“‘chit chat”

lol smh jk yea
wyd coo ima
wassup
somethin jp

CELTICS victory
BOSTON
CHARLOTTE

Boston :

playing daughter
PEARL alive war
comp

BOSTON

;p gna loveee

ese exam suttin
sippin

THUNDER
KINGS GIANTS
pimp trees clap

~7
N. California

SIMON dl
mountain seee

6am OAKLAND

pues hella koo
SAN fckn

hella flirt hut
10n0 OAKLAND




Social determinants of language change

[Eisenstein, O’Connor, Smith, Xing 2012 and in review]

weeks 1-50 weeks 51-100 weeks 101-150

Test sociolinguistic theories of how linguistic innovations diffuse
U.S. Census data
200 regions, 2600 words, 165 timesteps = 85M parameters

Naw,rt ™~ Blnom(N’r,ta O-(Vw =+ Tr t =+ Thw .t + nw,’r,t)

nw,t ~ Normal(Anw,t—h F)
A autoregressive coefficients (size R X R)




Social Media NLP
Part-of-speech tagger for Twitter

Example

ikr smh he asked fir yo last name
1 G O V P D A N

HMM word cluster (features for CRF tagger)

yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh
nahh nooooo yh yeaaa yeaah yupp naa yeahhhh yeaaahiknow werd
noes nahhh naww yeaaaa shucks yeaaaah yeahhhhh naaa naah nawl
nawww yehh ino yeaaaaa yeeah yeeeah wordd yeaahh nahhhh naaah
yeahhhhhh yeaaaaah naaaa yeeeeah nall yeaaaaaa

http://www.ark.cs.cmu.edu/TweetNLP/

[Gimpel, Schneider, O’Connor, Das, Mills, Eisenstein, Heilman,Yogatama, Smith, 201 |]
[Owoputi, O’Connor, Dyer, Gimpel, Schneider, Smith, 201 3]



http://www.ark.cs.cmu.edu/TweetNLP/
http://www.ark.cs.cmu.edu/TweetNLP/
http://brenocon.com/
http://brenocon.com/
http://www.cs.cmu.edu/~cdyer/
http://www.cs.cmu.edu/~cdyer/
http://www.cs.cmu.edu/~kgimpel/
http://www.cs.cmu.edu/~kgimpel/
http://www.cs.cmu.edu/~nschneid/
http://www.cs.cmu.edu/~nschneid/
http://www.cs.cmu.edu/~nasmith/
http://www.cs.cmu.edu/~nasmith/

Text Analysis for Social Science

® TJools for discovery and measurement
® Social, spatial, temporal context
® Probabilistic models
® A little bit of NLP can go a long way
Future work
® Text visualization / exploration tools
® Semantics: belief structures from text

Incorporate a-priori knowledge

Causal inference




