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R2 – “the coefficient of determination” – is a rescaling of MSE (relative to the
dataset in question). Alternative definitions are (1) the regression’s proportion
of total sum of squares, or (2) the squared correlation between predictions and
responses.

Setup: items xi and we’re targeting real-valued responses yi by fitting a
function f(x). Let’s be vague on training vs. test sets; all that matters is we
want to evaluate the prediction function’s accuracy on these items. Then

MSE =
∑

i

(f(xi) − yi)
2/N

Let’s use definition #1 of (1−R2), that it’s the “sum of squared error divided
by total sum of squares”. These terms are

• SStot = (yi−E[y])2: total sum of squares, which is a rescaling of response
variance

• SSerr = (yi−f(xi))
2: sum of squared errors, a.k.a. “residual sum of

squares”, a rescaling of the model’s predictions’ MSE

So we have:

1 − R2 =
SSerr

SStot

=

∑
(yi − f(xi))

2 /N∑
(yi − E[y])2 /N

=
MSE

V ar(y)

=
(Mean)SqErr of predictions

(Mean)SqErr of guessing the mean

R2 can be thought of as a rescaling of MSE, comparing it to the variance of
the outcome response.

It’s nice to interpret because it’s bounded between 0 and 1. Higher is better.
If MSE=0, then R2 = 100%: you have perfect predictions.
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If MSE is as bad as just guessing the mean for everything, then R2 = 0%:
about as bad as possible.

In fact, on your training data, if you fit a linear regression with a bias term,
it’s impossible to go below R2 = 0.1

But on held-out data, it’s possible to go lower than 0 if you’re overfitting. I
have an amusing text regression example I can show anyone who’s interested.

I think it’s useful to talk about held-out R2 simply because of its intuitive
scale.

You can think about it analgously to accuracy in the discrete case. Accuracy
is the proportion of response labels the model gets right. R2 is the proportion
of response variance the model captures. (Or “explains”, as some say.)2

Now, there’s a second view that apparently is more popular at least among
people in our class, that R2 is the squared correlation between predictions and
response. On the 4th Wikipedia page below, there’s a derivation for how this
is equivalent to the MSE view above, but it only applies to R2 on the training
data.

Relevant Wikipedia pages this all came from:

• http://en.wikipedia.org/wiki/Fraction_of_variance_unexplained

• http://en.wikipedia.org/wiki/Coefficient_of_determination

• http://en.wikipedia.org/wiki/Correlation

• http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

1I think this is true for fitting any function that has a bias term when you’re trying to

minimize squared error. Guessing the mean for everything is the least-squares solution for a

“linear” model that only has a bias term; i.e., the maximum likelihood solution for a constant

plus i.i.d. gaussian noise. If you care about measuring squared error, it’s hard to imagine

a fair but crappier baseline than guessing the mean, since you can always get infinitely bad

MSE by guessing infinitely far away. You might as well take the best of the crappy “guess a

constant everywhere” family of baselines.
2Though to complete the analogy of competition against a constant baseline, in the discrete

case it should be the model’s accuracy versus a guess-the-most-common baseline. I’m not sure

how to make it such a ratio scale nicely from 0-ish to 1; maybe logs have to be involved. Like

some sort of KL divergence or information gain or something measure.
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