
TweetMotif: Exploratory Search and Topic Summarization for Twitter

Brendan O’Connor
Carnegie Mellon University

brenocon@gmail.com

Michel Krieger
Meebo, Inc.

mikekrieger@gmail.com

David Ahn
Microsoft, Inc.

daviddahn@gmail.com

Abstract

We present TweetMotif, an exploratory search applica-
tion for Twitter. Unlike traditional approaches to in-
formation retrieval, which present a simple list of mes-
sages, TweetMotif groups messages by frequent signifi-
cant terms — a result set’s subtopics — which facilitate
navigation and drilldown through a faceted search inter-
face. The topic extraction system is based on syntactic
filtering, language modeling, near-duplicate detection,
and set cover heuristics. TweetMotif’s subtopic group-
ings make it easy to obtain both an overview and spe-
cific examples of what people are saying; we present ex-
amples where it can help deflate rumors, uncover scams,
summarize sentiment, and track political protests in
real-time. A demo of TweetMotif, plus its source code,
is available at http://tweetmotif.com.

Introduction and Motivation
Every day, people around the world broadcast their thoughts
to the world as textual messages in various social media. On
Twitter, a recently popular microblogging service, users post
millions of very short messages every day.

Organizing and searching through this large corpus is an
exciting research problem. Current work has focused on two
extremes: (1) showing individual messages, and (2) showing
aggregate volume counts.

The most prominent Twitter search systems currently re-
turn a flat list of the most recent messages that matched
the user query. This includes Twitter’s own search service,
search.twitter.com, as well as recent offerings incor-
porated into both Google and Microsoft Bing. This follows
the standard approach in web search and traditional infor-
mation retrieval, where users are often interested in finding a
single document that satisfies their information need. How-
ever, characterizing the relevance of microblog messages is
an open question; for many information needs, microblog
search needs some sort of summarization.

At the other end, there are many efforts that focus on
counting the total number of messages matching a term. The
Twitter website prominently features Trending Topics, a list
of terms that have been growing in frequency over the last
day, week, or month. This is good to help attain a very rough

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Screenshot of TweetMotif.

idea of what topics people are talking about, but do little to
provide specifics. Indeed, Twitter’s Trending Topics are of-
ten so mysterious that a new website was started to collect
explanations for what they are (whatthetrend.com), and
at least one Twitter client adds such explanatory blurbs to its
user interface (brizzly.com).

Description of TweetMotif
Our system, TweetMotif, responds to a user query like a
standard search system. For a query, it retrieves several hun-
dred of the most recent messages that match that query from
a simple index; we use the Twitter Search API.

Instead of simply showing the user this entire resultset
as a list, TweetMotif extracts a set of topics to group and
summarize these messages. A topic is simultaneously char-
acterized by (1) a textual label, which is a unigram, bigram,
or trigram; and (2) a set of messages, whose texts must all
contain the label. The set of topics is chosen to try to satisfy
several criteria, which often conflict:

1. Frequency contrast: Topic label phrases should be fre-
quent in the query subcorpus, but infrequent among gen-

eral Twitter messages. This ensures relevance to the query
while eliminating overly generic terms.

2. Topic diversity: Topics should be chosen such that their
messages and label phrases minimally overlap. Overlap-
ping topics repetitively fill the same information niche;
only one should be used.

3. Topic size: A topic that includes too few messages is bad;
it is overly specific.

4. Small number of topics: Screen real-estate and concomi-
tant user cognitive load are limited resources.

The goal is to provide the user a concise summary of
themes and variation in the query subcorpus, then allow the
user to navigate to individual topics to see their associated
messages, and allow recursive drilldown.

It could be interesting to formulate these desiderata as
a constrained optimization problem, but in this preliminary
work we heuristically fulfill them through several stages of
analysis, described as follows.

Step 1: Tokenization and syntactic filtering
Tokenization is difficult in the social media domain, and,
as is often glossed over in academic natural language pro-
cessing literature, good tokenization is absolutely crucial for
overall system performance. Standard tokenizers, usually
designed for newspapers or biomedical publications, per-
form poorly. Our tokenizer correctly handles hashtags, @-
replies, abbreviations, times of day, and long strings of punc-
tuation, while preserving emoticons and unicode glyphs
(e.g. musical notes) as lexical items. We made no attempt to
handle Asian languages or others that require sophisticated
word segmentation, but the tokenizer seems to work well
for Spanish and other languages with similar word bound-
ary conventions as English; some queries indeed generate
multilingual topic sets.

Unigrams are too narrow a unit of analysis; ideally, we
want to extract all phrases and subphrases. In lieu of devel-
oping or adapting a part-of-speech tagger, a prerequisite for
standard phrase chunking approaches, we use all unigrams,
bigrams, and trigrams (from our fine-grained tokenizations)
as candidate topic phrases. We discard unigrams belonging
to a small stopword list of function words, and discard all
bigrams and trigrams that cross syntactic boundaries. The
rules flag n-grams including certain types of punctuation
tokens in certain positions, and ones that end with certain
right-binding function words like “the” and “of.” This sim-
ple syntactic filtering greatly improves the coherency of ex-
tracted n-grams, though they usually seem worse than the
results of a typical phrase chunker. It often extracts phrases
cutting into the named entities and other multiword con-
structions.

Step 2: Score and filter topic phrase candidates
TweetMotif takes a simple language modeling approach to
identifying topic phrases. The language models we use
are based on the standard query likelihood retrieval model
(Manning, Raghavan, and Schtze 2008). Rather than trying
to find the documents that best model a set of query terms,

though, we are trying to find the phrases that are most dis-
tinctive for a tweet result set. One way of looking for such
phrases is to seek out phrases whose probability relative to
a language model estimated from a tweet result set is much
greater than their probability relative to a language model
for tweets in general. To that end, we score phrases by the
likelihood ratio:

Pr(phrase | tweet result set)
Pr(phrase | general tweet corpus)

Note that we do not try to estimate the probability of
phrases on the basis of the constituent tokens in the phrase,
i.e., we do not estimate n-gram probabilities from statistics
on (n− 1)-grams or anything like that. Rather, we estimate
the probability of unigram phrases directly from unigram
counts, the probability of bigram phrases directly from bi-
gram counts, and the probability of trigram phrases directly
from trigram counts. As is usually the case in language mod-
eling, a given phrase does not necessarily occur in a corpus,
so phrase probabilities must be estimated with smoothing.
We tried several simple estimation methods, including max-
imum likelihood estimation and Laplace smoothing, but set-
tled on Lidstone smoothing:

Pr(phrase | corpus) =
phrase count in corpus + δ

N + δn

where for a phrase of length m, N is the count of all phrase
instances of length m in the corpus, δ is the smoothing pa-
rameter, and n is the count of all phrase types of length m
in the corpus. Essentially, there are independent models for
unigram, bigram, and trigram phrases.

The background corpus consists of several hundred thou-
sand randomly collected Twitter messages from April 2008,
which is admittedly small and limited.

It is interesting to compare our approach to TF/IDF for
document retrieval, which estimates document relevance by
balancing the frequency of query terms against their fre-
quencies in a background corpus. Note that the average
Twitter message is 11 words long, and words rarely occur
more than once in a message; thus, the count of a word is vir-
tually the same as the count of messages it occurs in (DF and
TF are the same). If messages are considered documents, the
notion of document TF is not very useful. Our approach is
more like TF for one giant document consisting of the con-
catenation of all query subcorpus messages. This too is an
odd analogy. In general, we believe the microblog search
problem will require creative formulations of cross-message
phonemena beyond current paradigms in IR.

Step 3: Merge similar topics
Every candidate phrase defines a topic, a set of messages
that contain that phrase. Many phrases, however, occur in
roughly the same set of messages, thus their topics are repet-
itive. This is undesirable, so we seek to merge similar topics.

First, there are easy merges between subsumed n-gram
phrases of differing sizes. Note that each of an n-gram’s
label-subsumed (n-1)-grams must conversely subsume its
message set. For example, the message set for the bigram

topic “swine flu” must be a subset or equal to the two uni-
gram topics “swine” and “flu.” If the “swine flu” topic is in
fact equal to the “flu” topic, then we discard the “flu” topic,
since “swine flu” is strictly better: we can move from “flu”
to the more descriptively labeled “swine flu” without losing
any messages.

But more generally, there are more difficult cases when
topics roughly overlap; we should to merge topics if their
message sets are sufficiently similar. We use the Jaccard set
similarity metric, which measures the size of the intersec-
tion, scaled from 0 to 1. It has a value of 0% if there are
no shared messages, and is 100% if all messages are shared;
i.e, the topics are identical. For topic message sets s1 and
s2, merge the topics if:

Jacc(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

≥ 0.9

Topic labels are ignored for this analysis. All pairs of topics
are compared, and final topics are connected components of
the pairwise Jacc ≥ 0.9 graph — i.e., single-link clustering,
so topics less than 90% similar may end up merged. When
several topics are merged, only the intersection of messages
is included in the new topic. There is a label choice prob-
lem/opportunity for merged topics: any of the old topics’ la-
bels are now legitimate. Our heuristic solution usually picks
longer and higher scoring labels, and sometimes combines
short labels into a skip n-gram.

Step 4: Group near-duplicate messages
When we implemented the basic topic system, a message
duplication issue was revealed: the same, or nearly the same,
textual message may be repeated many times. People for-
ward (“retweet”) interesting messages such as jokes and
news headlines; and furthermore, a seemingly huge number
of bots repeat advertisements, spam, weather reports, news
feeds, other people’s tweets, songs being played on person-
alized Internet radio stations, templated messages, etc. It is a
waste of space to always show near-duplicates to the search
user; therefore we detect clusters of near-duplicates, display
them with a single representative and numeric size, and al-
low them optinally to be viewed.

The algorithm simply groups messages whose sets of tri-
grams have a pairwise Jaccard similarity exceeding 65%.
(Using a trigram message index cuts down on the poten-
tially quadratic runtime.) This approximates finding a large
shared phrase, since usually two messages share several tri-
grams only when they are overlapping trigrams from a larger
shared n-gram. We experimented with weighting trigrams
by their inverse frequency in the general corpus, but this did
not seem to improve results.

This technique seems to reliably find retweets and other
forms of repetition; it also naturally groups together spam.

Step 5: Finalize topics
We are now left with a ranked list of topics containing mes-
sages in near-duplicate clusters. After eliminating topics that
contain only one near-duplicate cluster, the list is cut off to
the top 40 topics, and all messages that did not end up in a
topic are put in a catch-all “more...” topic.

User interface
Rather than the flat list of results commonly presented in
Web search, we opted for a user interface inspired by faceted
search, which has been shown to aid Web search tasks
(Hearst et al. 2002). This allows users to explore the breadth
of related themes that might appear for a given search query.

TweetMotif’s main UI is a two-column layout. The left
column is a list of themes that are related to the current
search term, while the right column presents actual tweets,
grouped by theme. As themes are selected on the left col-
umn, a sample of tweets for that theme appears at the top
of the right column, pushing down (but not removing) tweet
results for any previously selected related themes. This al-
lows users to explore and compare multiple related themes
at once.

Color-coding is used to highlight occurrences of the orig-
inal search term and of the currently selected related theme.
The interface purposely focuses on the content of the mes-
sage, rather than the timestamp or author.

Examples
Figure 1 shows an example of using TweetMotif during the
G20 summit meeting in 2009. Many people were tweeting
about the G20 protests in Pittsburgh, and many of the top-
ics capture specific locations (“west penn hospital”), actors
(“anarchists,” “riot police”), etc. One of the co-authors used
TweetMotif to learn where violent protests were taking place
— “Baum and Liberty,” a street intersection, appears as the
first topic in the screenshot, and clicking on it reveals re-
ports of protests that were happening there. But checking
again 15 minutes later, a new topic, “Baum and Morewood,”
had appeared: the protest had moved down a few blocks.

We have compiled many other examples as suggestions in
the TweetMotif interface; it also shows the current Trending
Topics as provided by Twitter.

Related Work
In the blog and microblog search domain, much of the work
on search has focused on its applications and unique char-
acteristics relative to traditional Web search, though some
work focuses on improving the search engine itself. This
work includes research that uses temporal data for cluster-
ing (Alonso, Gertz, and Baeza-Yates 2009), or applies infor-
mation visualization techniques to aid search (Ferreira et al.
2010).

It is interesting to compare TweetMotif to previous work
on topic modeling such as Latent Semantic Analysis / In-
dexing (LSA/LSI) and Dirichlet Topic Models (LDA). In
TweetMotif, unlike these models, all topic-message relation-
ships and representations are discrete (boolean). LSA/LSI is
a vector topic model and LDA is a probabilistic topic model;
TweetMotif’s topic criteria might be formulated as a discrete
topic model. Since user interfaces usually communicate dis-
crete information — e.g., lists of representative words, or the
set of documents belonging to a topic — the results of LSA,
LDA, or document clustering usually have to be discretized
anyways for a user interface. Directly formulating discrete

topic models may be a useful approach for future work in
exploratory document collection analysis.

References
Alonso, O.; Gertz, M.; and Baeza-Yates, R. 2009. Clus-
tering and exploring search results using timeline construc-
tions. In Proceeding of the 18th ACM conference on Infor-
mation and knowledge management, 97–106. Hong Kong,
China: ACM.
Ferreira, D.; Freitas, M.; Rodrigues, J.; and Ferreira, V.
2010. TwitViz: Exploring Twitter Network For Your Inter-
ests.
Hearst, M.; Elliott, A.; English, J.; Sinha, R.; Swearingen,
K.; and Yee, K. 2002. Finding the flow in web site search.
Commun. ACM 45(9):42–49.
Manning, C. D.; Raghavan, P.; and Schtze, H. 2008. In-
troduction to Information Retrieval. Cambridge University
Press, 1st edition.

