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In 2007, IBM Research took on the grand challenge of building a
computer system that could compete with champions at the game
of Jeopardy!i. In 2011, the open-domain question-answering (QA)
system, dubbed Watson, beat the two highest ranked players in a
nationally televised two-game Jeopardy! match. This paper provides
a brief history of the events and ideas that positioned our team
to take on the Jeopardy! challenge, build Watson, IBM Watsoni,
and ultimately triumph. It describes both the nature of the QA
challenge represented by Jeopardy! and our overarching technical
approach. The main body of this paper provides a narrative of the
DeepQA processing pipeline to introduce the articles in this special
issue and put them in context of the overall system. Finally, this
paper summarizes our main results, describing how the system, as a
holistic combination of many diverse algorithmic techniques,
performed at champion levels, and it briefly discusses the team’s
future research plans.

Introduction
The open-domain question-answering (QA) problem is
one of the most challenging in the realm of computer science
and artificial intelligence (AI). QA has had a long history
[1] and has seen considerable advancement over the past
decade [2, 3].
Jeopardy!** is a well-known television quiz show that

has been on air in the United States for more than 25 years.
It pits three human contestants against one another in a
competition that requires rapidly understanding and
answering rich natural-language questions, which are called
clues, over a very broad domain of topics, with stiff penalties
for wrong answers [4]. On January 14, 2011, at IBM
Research in Yorktown Heights, New York, IBM Watson*,
a computer, beat the two best Jeopardy! champions in a
real-time two-game competition. The historic match was
conducted and taped by Jeopardy Productions, Inc. and was
nationally televised over three nights onFebruary 14–16, 2011.
The fact that a computer beat the best human contestants

at Jeopardy! represents a major landmark in open-domain
QA, but in many ways, this is just the beginning. Research
in open-domain QA requires advances in many areas of
computer science and AI, including information retrieval
(IR), natural-language processing (NLP), knowledge
representation and reasoning (KR&R), machine learning, and

human-computer interfaces (HCIs). Techniques that bring
all these technologies together to process language and
knowledge have a longway to go before computers can interact
and reason over natural-language content at human levels.
What we have accomplished with Watson is the

development of a software architecture and a methodology
that builds on, integrates, and advances decades of
innovation in these fields. It demonstrates a capability few
thought possible, and one that compelled us forward when
many might have given up. Watson’s public performance
has opened the door to commercial applications and a future
where scientists and businesspeople alike have a deeper
appreciation for the potential impact of technologies that
promise to tap into the wealth of knowledge buried in text
and other unstructured data sources.
Many high-level descriptions of Watson and its

performance on Jeopardy! have appeared in the popular
press. An overview paper about DeepQA, which is the
underlying architecture and technology powering Watson,
was published in AI Magazine before the match was
played [4], but few papers have been published detailing
the internal algorithms used in Watson and how they relate
to prior work. This special issue of the IBM Journal of
Research and Development collects a set of articles
describing many of Watson’s internal algorithms and how
they were combined to deliver a winning performance at the
Jeopardy! task.
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The purpose of this paper is to introduce this special
issue and describe the different articles contained herein.
Considering the general interest and significance of the
accomplishment represented by Watson, this paper first
provides a brief history of the events and ideas that
positioned our team to take on the Jeopardy! challenge,
build Watson, and ultimately triumph. I describe the nature
of the technical challenges represented by Jeopardy! and
discuss our overarching technical approach. In the main body
of this paper, I use a narrative of the DeepQA processing
pipeline to introduce the articles in this journal and put them
in context of the overall system. Finally, I summarize the
main results, how the system, as a holistic combination of
many diverse algorithmic techniques, was tuned to perform
at champion levels and the team’s future research plans.

History

Unstructured information
Much of human communication, whether it is in
natural-language text, speech, or images, is unstructured.
The semantics necessary to interpret unstructured
information to solve problems is often implicit and must
be derived by using background information and inference.
With structured information, such as traditional database
tables, the data is well-defined, and the semantics is explicit.
Queries are prepared to answer predetermined questions
on the basis of necessary and sufficient knowledge of the
meaning of the table headings (e.g., Name, Address, Item,
Price, and Date). However, what does an arbitrary string of
text or an image really mean? How can a computer program
act on the content of a Bnote[ or a Bcomment[ without
explicit semantics describing its intended meaning or usage?
With the enormous proliferation of electronic content on

the web and within our enterprises, unstructured information
(e.g., text, images, and speech) is growing far faster than
structured information. Whether it is general reference
material, textbooks, journals, technical manuals, biographies,
or blogs, this content contains high-value knowledge
essential for informed decision making. The promise of
leveraging the knowledge latent in these large volumes of
unstructured text lies in deeper natural-language analysis that
can more directly infer answers to our questions.
NLP techniques, which are also referred to as text

analytics, infer the meaning of terms and phrases by
analyzing their syntax, context, and usage patterns. Human
language, however, is so complex, variable (there are
many different ways to express the same meaning), and
polysemous (the same word or phrase may mean many
things in different contexts) that this presents an enormous
technical challenge. Decades of research have led to many
specialized techniques, each operating on language at
different levels and on different isolated aspects of the
language understanding task. These techniques include, for

example, shallow parsing, deep parsing, information
extraction, word-sense disambiguation [5, 6], latent semantic
analysis [7], textual entailment [8], and coreference
resolution [9]. None of these techniques is perfect or
complete in their ability to decipher the intended meaning.
Unlike programming languages, human languages are not
formal mathematical constructs. Given the highly contextual
and implicit nature of language, humans themselves often
disagree about the intended meaning of any given expression.
Our interpretations of text can be heavily influenced by

personal background knowledge about the topic or about
the writer or about when the content was expressed.
Consider the expression BThat play was bad![ What
sort of thing does Bplay[ refer to? A play on Broadway?
A football play? Does Bbad[ mean Bgood[ in this sentence?
Clearly, more context is needed to interpret the intended
meaning accurately. Language processing techniques,
such as natural-language parsing, coreference resolution,
or word-sense disambiguation, need to independently
advance. However, perhaps most importantly, we need
to understand how to integrate them as contributing
components within more comprehensive language
understanding systems rather than advance them only in
response to isolated evaluations. How good does a parser
have to be if different techniques over large data resources
in a larger system help get the answer?
In more comprehensive systems such as open-domain

QA and dialogue systems, we can learn how many different
algorithms interact and complement each other to perform
complex tasks. Such system-level experiments facilitate
a deeper understanding of which algorithmic techniques
require more investment in order to more rapidly advance
the field as a whole. End-to-end system research is difficult,
however. Just getting collections of independently developed
analytics to talk to each other and then scale efficiently
enough to run large experiments is a challenge.
From 2001 through 2006, we built the Unstructured

Information Management Architecture (UIMA) to facilitate
this kind of basic interoperability. UIMA is a software
architecture and framework that provides a common platform
for integrating diverse collections of text, speech, and
image analytics independently of algorithmic approach,
programming language, or underlying domain model [10].
UIMA is focused on the general notion of integrating a
scalable set of cooperating software programs, called
annotators, which assign semantics to some region of text
(or image or speech). In 2006, IBM contributed UIMA
to Apache [11], and it is currently in regular use around
the world by industry and academia.
UIMA provides the essential infrastructure needed to

engage large-scale language understanding research.
Open-domain QA for Jeopardy! became the driving
challenge problem. Building Watson was the system-level
experiment that brought together hundreds of different
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cooperating algorithms. Reminiscent of Minsky’s BSociety
of Mind[ [12], each of these algorithms alone performs
relatively simple language processing tasks. None completely
understands the question or can single-handedly justify an
answer, and none alone behaves like a smart Jeopardy!
player, but combined as part of the DeepQA architecture,
they enable Watson to perform as a highly competitive
Jeopardy! champion.

Open-domain QA and the Jeopardy! challenge
In May 1997, IBM’s Deep Blue* computer beat Gary
Kasparov, the reigning chess grand champion, in a six-game
chess match. The extremely broad appeal of this project
and the global focus it brought to the science performed at
IBM Research beckoned for an encore. Could a Jeopardy!
playing machine be the next Deep Blue for IBM? The
problem, of course, was that open-domain QA presented a
vastly different challenge in computer science than did chess.
For humans, it was clear that to be a chess master, you
have to be really smart. To win at Jeopardy!, you have
to know a lot, be well read, understand language and its
nuances, and think and react quickly. Nonetheless, if asked
which task was more difficult, I suspect that most people
would say chess. However, whereas chess is a well-defined
task with explicit, complete, and precise mathematical
semantics, natural language is ill-defined and ambiguous,
and its meaning is implicit.
From 2004, the year Ken Jennings lit up the airwaves

with his record 74-game Jeopardy! winning streak, through
the end of 2006, the head of IBM Research challenged
researchers to build a system that could win at Jeopardy!.
Most believed it was impossibleVpure folly destined to
embarrass IBM and to destroy the credibility of all the
researchers who attempted it. For me, and ultimately my
team, taking on Jeopardy! was absolutely irresistible.
We had an accomplished history in the open-domain

QA task. Our prior QA work took shape in the form of a
QA system we called PIQUANT [13, 14]. PIQUANT
development started in 1999, predating our work in UIMA,
and was funded by government research grants and
tested against NIST (National Institute of Standards
and Technology) evaluation data in the Text REtrieval
Conference (TREC) QA track between 1999 and 2005 [15].
PIQUANT was based on state-of-the-art techniques that
used a single ontology and combined parsing, information
extraction, and search to generate answers to factoid-style
questions. It consistently scored in the top tier of
systems in TREC evaluations. Although our work on
PIQUANT advanced our NLP technology in key areas and
resulted in many published papers, its performance was
far from what would be required to compete in Jeopardy!.
PIQUANT, like most state-of-the-art QA systems at

the time, presumed a static predetermined set of answer
typesVclasses of concepts that the question was asking for

(e.g., people, places, dates, and numbers). The breadth of
domain (types of things asked about) and complexity of
language in Jeopardy! exceeded that of TREC evaluations.
The demand for accurate probabilities in an answer’s
correctness and the demand for speed also far exceeded
that of TREC evaluations. Moreover, with PIQUANT, there
was no easy way to extend, rapidly measure, and advance
with a diversity of techniques contributed by different
researchers.
I believed, though, that with the right resources fully

dedicated to the challenge, even failure would have taught
us more about the field than years of incremental progress.
At the end of 2006, we received the support to conduct a
four-month feasibility study. The conclusion was that the
Jeopardy! challenge would drive key innovations and push
the science and engineering of open-domain QA to new
heights.
A whole new architecture, technical approach, and culture

had to be put in place. Whereas UIMA facilitated the
technical integration and scale-out of a broad range of
analytic components, the challenge for building Watson
became the development of the algorithms themselves and
the architecture and methodology necessary for rapidly
combining, measuring, and advancing them to succeed at
Jeopardy!. In April 2007, we committed to the challenge
of building an open-domain QA capability, which is good
enough in terms of precision, confidence estimation, and
speed, to compete against grand champions at Jeopardy!
within three to five years.

What it takes to win at Jeopardy!
To compete on Jeopardy!, Watson would have to act like
a real-time Jeopardy! contestant. It would have to play
real-time games with new clues never before seen by Watson
or its developers. Like its human competitors, it would
have to be completely self-containedVno web search, no
connection to the Internet, and no interaction with anyone
else for help in understanding or answering the questions.
Before the game, it would have to Bstudy[Vanalyze
and store in its memory every bit of information it might
consider during the game.
In an average of just three seconds, Watson would have

to parse a clue, understand what it was asking for, relate
its meaning to what it had Bread,[ determine the best
answer, and compute whether it was confident enough
to buzz in. It would then have to buzz in fast enough
to attempt an answer; speak the answer; and finally, based
on the result, select the next clue or give up control to another
player.
A keyword search engine can deliver millions of

potentially relevant documents. Where’s the correct answer?
Is it even there? Even if the answer is somewhere in a top hit,
what word or phrase or combination thereof represents the
exact answer, and how do you determine the likelihood it
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is correct? If Watson gives a wrong answer, just like any
other Jeopardy! contestant, it loses the dollar value of
the clue. Watson would need to produce its best answer
from among hundreds of possibilities. Moreover, it would
need to consistently determine an accurate probability that
its best answer was indeed correct. Programming a computer
to achieve the necessary precision and confidence over
natural-language questions requires that the computer
perform deeper analysis of the clue and of all the content
it has read that might justify an answer.
To estimate how good humans are at this task, we gathered

and analyzed data from approximately 2,000 former
Jeopardy! games. For each available game, we counted the
total number of questions attempted by the game’s winner.
These are the questions a player is confident enough to
buzz in for and fast enough to get a chance to answer.
Then, we counted the percentage of attempted questions
the winner correctly answered. We found that, on average,
winning players attempt between 40% and 50% of the
questions in a game and get between 85% and 95% correct.
Because there is competition for the buzz, a player will
not always get a chance to answer all the questions he
wants to answer. Therefore, depending on the competition,
to answer 40% to 50% of the questions, a player must be
confident enough to buzz in for more questions.
On the basis of this analysis, we set a performance

target that would enable Watson to buzz in for at least 70%
of the questions in a game and of those, get at least 85%
correct. We called this level of performance 85% Precision
at 70% answered, or simply 85% Precision@70. This
aggressive performance target would put Watson in a
competitive position against champion players. Of course,
to win at a real-time game, Watson would also have
to compute its answers and confidences fast enough to
be competitive at the buzz and would have to make good
betting decisions on Daily Doubles and Final Jeopardy!
questions.

Inside DeepQA: The architecture
underlying Watson
In 2007, we created a baseline system using PIQUANT
and measured its performance on a Jeopardy! test set.
It delivered about 16% Precision@70. This and other early
baselines we developed in 2007 failed to approach the
precision and confidence estimation required to even qualify
for the game, much less compete with grand champions.
We needed to dramatically revamp our approach. Over
the next year, two important technical artifacts emerged
from our work that provided the foundation for our success
with Watson: first, an extensible software architecture for
building QA systems, which we named DeepQA, and
second, a methodology based on the ideas in [16] for the
rapid advancement and integration of many core algorithmic
techniques, which we named AdaptWatson [17].

DeepQAVThe DeepQA architecture is illustrated in
Figure 1, and a high-level description appears in [4].
The architecture defines various stages of analysis
in a processing pipeline. Each stage admits multiple
implementations that can produce alternative results. At
each stage, alternatives are independently pursued as part
of a massively parallel computation. DeepQA never assumes
that any component perfectly understands the question
and can just look up the right answer in a database. Rather,
many candidate answers are proposed by searching many
different resources, on the basis of different interpretations
of the question and category. A commitment to any one
answer is deferred while more and more evidence is gathered
and analyzed for each answer and each alternative path
through the system.
DeepQA applies hundreds of algorithms that analyze

evidence along different dimensions, such as type
classification, time, geography, popularity, passage support,
source reliability, and semantic relatedness. This analysis
produces hundreds of features or scores, each indicating
the degree to which a bit of evidence supports an answer
according to one of these dimensions. All the features
for a candidate answer must be combined into a single score
representing the probability of the answer being correct.
DeepQA trains statistical machine learning algorithms on
prior sets of questions and answers to learn how best to
weight each of the hundreds of features relative to one
another. These weights are used at run time to balance all
of the features when combining the final scores for candidate
answers to new questions. The final result of the process
is a ranked list of candidate answers, each with a final
confidence score representing the likelihood the answer is
correct based on the analysis of all its supporting evidence.
If the top answer’s confidence is above a threshold, Watson
wants to answer. If not, it will not take the chance.
Below, I use the DeepQA processing pipeline as a

backdrop for introducing the papers in this issue that describe
many of the algorithms the team has developed to implement
each processing stage.
AdaptWatsonVBy the end of 2007, we had an initial

implementation of the DeepQA framework. It admitted
plug-ins from the team of researchers and performed
the full end-to-end QA task on Jeopardy! clues. Although
its performance was poor, the team was in a position
to incrementally advance core algorithms; measure results;
and, based on those results, come up with new ideas
and iterate. Over the next year, a methodology named
AdaptWatson and a set of tools emerged for rapidly
advancing the research, development, integration, and
evaluation of more than 100 core algorithmic components.
These components were designed to understand questions,
search for candidate answers, collect evidence, score
evidence and answers, produce confidences, and merge
and rank results.
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At the same time, the research team grew to about
25 full-time researchers and engineers, including several
student members from key university partnerships. The team
performed and documented more than 8,000 independent
experiments by the time Watson went live. Each experiment
generated 10 to 20 GB of trace data. Tools were developed to
efficiently explore this data and discover failures and their
likely causes. On the basis of analysis of this data, the team
generated new algorithmic ideas and quantitatively estimated
their potential impact on end-to-end performance. This
data was used to prioritize, develop, and test new algorithms.
Successful algorithmic advances were included in biweekly
full-system builds. These were regularly run to produce
updated baseline performance. This iterative process was
implemented by the core team of researchers working in a
single room and supported by more than 200 eight-core
servers.
With the DeepQA architecture and the AdaptWatson

methodology in place, the team drove the performance
of Watson from early baselines delivering roughly 20%
Precision@70 to greater than 85% Precision@70Vgood
enough to compete with champions. Many of the papers in
this issue describe the result of advancing core algorithms
based on using DeepQA as a foundational architecture and
the AdaptWatson methodology as a team-oriented process

for rapidly creating and advancing a wide diversity of
algorithm techniques to meet target performance.

Understanding questions
The breadth of the Jeopardy! domain is exemplified by the
richness of language used, the variety of questions asked,
and the huge range of types and topics covered. It is a
challenge just to analyze the questions well enough to
determine what they might be asking for or how the focus
of the clue relates to other key elements in the clue. The
more precisely Watson understands the clue, the better
chance it has at finding and justifying answers.
We refer to the word or phrase that indicates the class

of thing the clue is asking for as the lexical answer type,
or LAT. The clue in the first example below is asking
for a president, which is a useful LAT. However, the LAT
in the subsequent clueVBthey[Vdoes not carry much
semantic information at all. The third clue below claims
to be looking for a Bstar,[ but, in fact, the answer is a
unique synthesis of Tom Cruise and cruise controlVno
star at all.

RECENT HISTORY: President under whom the
U.S. gave full recognition to Communist China.
(Answer: BJimmy Carter[)

Figure 1

DeepQA architecture.
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POP MUSIC: Their grandfather had a number 1 record
in 1935; their father, Number 1’s in 1958 & 1961; and
they hit number 1 in 1990.
(Answer: BGunnar & Matthew Nelson[)

BEFORE & AFTER: The BJerry Maguire[ star who
automatically maintains your vehicle’s speed.
(Answer: BTom Cruise control[)

In the prior examples, the category was not required to
identify the LAT. In the following clue, however, analysis
of the category BFOLLOW THE LEADER TO THE
CAPITAL[ is essential to figure out what the question
is asking for:

FOLLOW THE LEADER TO THE CAPITAL:
Pervez Musharraf. (Answer: BIslamabad[)

The first technical paper in this special issue, BQuestion
Analysis: How Watson Reads a Clue,[ by Lally et al. [18],
starts at the beginning of the DeepQA processing pipeline.
It describes Watson’s question analysis algorithmsVhow
it analyzes a clue and attempts to determine what it is
asking about and the kind of thing it is asking for. The
second paper, BDeep Parsing in Watson,[ by McCord et al.
[19], presents ESG, our English Slot Grammar parser and
the predicate-argument structure (PAS) generator. ESG
produces a grammatical parse of a sentence and identifies
parts of speech and syntactic roles such as subject, predicate,
and object, as well as modification relations between
sentence segments. The PAS generator is used to produce
a more abstract representation of a parse suitable for other
analytics further down the DeepQA processing pipeline.
Natural-language parsing techniques are critical for analyzing
questions and all the content Watson uses to discover
answers and their supporting evidence.

Answer and evidence sources
Watson had to be completely self-contained. Like the human
contestants, it could not access the Internet or any resources
outside the confines of its physical Bbody.[ Part of the
challenge was to determine what resources Watson should
consider as a source for answers and evidence. We started
with the obviousVencyclopedias and reference booksVand
then developed a semiautomatic process for growing
Watson’s content. There are several tradeoffs to deal with.
First, adding content could hurt system performance if
it contributed more noise than value. Second, adding more
content was the biggest driver for hardware requirements.
Although we were dedicated to building a system capable
of competing at Jeopardy!, ultimately, there were limits.
We could have discovered, for example, that the hardware
requirements were just too great to meet practical concerns
relating to cost, space, and efficiency. We could not

indiscriminately add servers and therefore, could not
indiscriminately grow the content.
The next two papers, BTextual Resource Acquisition and

Engineering,[ by Chu-Carroll et al. [20], and BAutomatic
Knowledge Extraction from Documents,[ by Fan et al. [21],
describe our approach to acquiring, evaluating, integrating,
and expanding Watson’s content. The first paper discusses
how raw textual content was selected, evaluated, and
automatically expanded. The second discusses our
approach to analyzing the raw content for building a derived
resource, called PRISMATIC. PRISMATIC uses parsing,
information extraction, and statistics to induce axiomatic
knowledge from text for later use in candidate generation and
in answer scoring. For example, automatically induced and
included in PRISMATIC are commonsense axioms, such
as Bbooks are found on shelves,[ Bpeople visit museums,[
Bpeople visit websites,[ and Bcandidates win elections.[
These axioms can help generate and score plausible answers.

Discovering candidate answers
In spite of the high accuracy obtained with our
natural-language parser, producing a perfect logical
representation of a clue and then finding the identical
representation in some structured database that contains an
answer was extremely rare. This failing was due to the wide
variety in expression of language and the breadth of topics,
type categories, and properties in Jeopardy!, relative to the
very limited expression and narrow coverage of existing
structured resources such as DBpedia [22]. Our best attempts
at leveraging structured resources for producing answers
resulted in confident answers less than 2% of the time [4].
DeepQA does not assume that it ever completely

understands the question with respect to any preexisting
model, set of type ontologies, or database schema. Rather,
the results of parsing and question analysis result in multiple
interpretations of the question and, ultimately, in a variety
of different queries. These queries are run against different
structured and unstructured sources using a variety of search
mechanisms with complementary strengths and weaknesses.
Rather than attempt to directly answer the question, the
idea at this point in the pipeline is to first generate a broad
set of candidate answers. Each candidate answer combined
with the question represents an independent hypothesis.
Each becomes the root of an independent process that
attempts to discover and evaluate supporting evidence in
its candidate answer. In BFinding Needles in the Haystack:
Search and Candidate Generation,[ Chu-Carroll et al. [23]
provide a description of the search and candidate generation
components used in Watson to find possible answers. A
metric referred to as candidate binary recall is computed as
the percentage of questions for which the correct answer is
generated as a candidate. This metric reflects the goal of
maximizing candidate recall at the hypothesis generation
phase of the DeepQA pipeline.
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Right type
If candidate generation finds a correct answer for only 85%
of the questions, then Watson can, at most, get 85% of the
questions correct. It can only perform this well if, after
considering all of the candidates, it ranks the right answer in
the first position and with enough confidence to take the
risk and buzz in. Accurately computing a probability that a
candidate is correct is a critical and very challenging feature
of the system. Buzzing in with a wrong answer is costly.
A contestant will lose the dollar value of that clue and end up
helping his competitors earn the money on the rebound.
The entire remainder of Watson’s processing pipeline and a
significant portion of its computational resources are spent
on finding the best answer and computing an accurate
probability that it might be correct.
To do that, Watson analyzes many different classes of

evidence for each answer. An important class of evidence
considered is whether the answer is of the right answer
type. It was clear from early experiments that the approach
we took in PIQUANT, where we anticipated all answer
types and built specialized algorithms for finding instances
of anticipated types (such as people, organizations, and
animals), would not be sufficient. Jeopardy! refers to far
too many types (on the order of thousands) for us to have
considered developing a priori information extraction
components for each one. Moreover, they are used
in ways where their meaning is highly contextual and
difficult to anticipate. For example, in the first clue below,
the *Running_Foot_St_EvenLAT is Bquality.[ How
many things might be correctly classified as a Bquality?[
Similarly, the next two questions are both asking for a
Bdirection.[

ART HISTORY: Unique quality of BFirst Communion
of Anemic Young Girls in the Snow,[ shown at the
1883 Arts Incoherents Exhibit.
(Answer: Ball white[)

DECORATING: If you’re standing, it’s the direction
you should look to check out the wainscoting.
(Answer: Bdown[)

SEWING: The direction of threads in a fabric is called
this, like the pattern of fibers in wood.
(Answer: Bgrain[)

Jeopardy! uses very opened-ended types. We employ
dynamic and flexible techniques for classifying candidate
answers, heavily relying on the context in the question.
For this, we developed a technique we called type coercion
[24]. Type coercion radically differs from earlier systems
(such as PIQUANT) that statically classify a possible answer
on the basis of a preexisting set of types. Instead, it takes a
lexical answer type such as Bdirection[ and poses a type

hypothesis for each candidate, such as is_a (Bdown,[
Bdirection[) or is_a (Bgrain,[ Bdirection[). It then consults a
wide variety of structured and unstructured resources using
a diverse set of algorithmic techniques to gather evidence
for and against the type hypothesis.
No component in the system was pretrained in classifying

Bdirections.[ Rather, Watson uses an extensible ensemble
of techniques based on a wide variety of textual and
ontological resources, including PRISMATIC [21], YAGO
[25], and WordNet** [26]. Algorithms designed to use these
resources independently quantify a degree of support for
believing that the type hypothesis is true. In the next paper,
in the issue, BTyping Candidate Answers using Type
Coercion,[ Murdock et al. [27] discuss the type coercion
techniques developed for Watson that provide the dynamic
classification necessary for dealing with the huge variety of
contextual types used in Jeopardy!.

Collecting and scoring evidence
After DeepQA generates candidate answers and confidence
scores that indicate the degree to which each answer is
considered to be an instance of the answer type, DeepQA
attempts to collect and score additional evidence. Algorithms
whose function is to score evidence are called evidence
scorers. These algorithms are designed to produce a
confidence scoreVa number that indicates the degree to
which a piece of evidence supports or refutes the correctness
of a candidate answer. Multiple evidence scorers can work
in parallel for each candidate answer and over different
forms of evidence. One type of evidence is passage
evidenceVparagraphs of text found in volumes of textual
resources that might support the correctness of a candidate
answer. In BTextual Evidence Gathering and Analysis,[
Murdock et al. [28] discuss the methods used to gather
and score passage evidence using grammar-based and other
syntactic analysis techniques.
Grammar-based techniques address syntactic and shallow

semantic features of language. They look for how the
words and structure of language may predict similarities
in meaning. Relation extraction techniques look deeper
into the intended meaning, attempting to find semantic
relationships (e.g., starred in, visited, painted, invented, and
naturalized in) between concepts, although they may have
been expressed with different words or with different
grammatical structures. In BRelation Extraction and Scoring
in DeepQA,[ Wang et al. [29] present two approaches
to broad-domain relation extraction and scoring: one
based on manual pattern specification (rule based) and
the other relying on statistical methods for pattern elicitation,
which uses a novel transfer learning technique, relation
topics.
The rule-based approach is more precise and is used

by several components, but it requires manual effort to
develop patterns for a small targeted set of relations
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(approximately 30). Statistical approaches, on the other hand,
automatically learn how to extract semantic relations from
training data, which may be collected semiautomatically
and were trained to detect occurrences of a large number
of relations (approximately 7,000). Below, we show
three examples of clues and the different relations that
were extracted.

MOTHERS & SONS: Though only separated by one
year in real life, she played mother to son Colin Farrell
in BAlexander.[ (Answer: BAngelina Jolie[)

• Relation: starring (she, BAlexander[)

THE DEVIL: BThe Screwtape Letters[ from a senior
devil to an under devil are by this man better known
for children’s books.
(Answer: BC(live) S(taples) Lewis[)

• Relation: author (man, BThe Screwtape Letters[)

THE LONE REPRESENTATIVE: Michael Castle
from this state with 3 counties: New Castle, Kent,
and Sussex. (Answer: BDelaware[)

• Relation: residence (BMichael Castle[, state)

Because of the breadth of topics and variability in
language, and despite the success of relationship extraction,
DeepQA can rarely reduce the question to a single concise
semantic relation, as in directed_film (person, BGreen
Mansions[), and then accurately map it to some existing
structured database schema, for example, using DBpedia
[22], Freebase [30], or the Internet Movie Database (IMDB)
[31], where it can correctly look up the answer (less than
2% of the time). Structured databases tend to be too narrow
in their coverage and too brittle in their expression. Their
schemas capture one view of the data and do not attempt
to reflect the enormous range of linguistic expressions
that may map to their data.
Although structured resources tend to be too narrow and

brittle to directly and confidently answer questions, several
components in DeepQA do use structured data, such
as databases, knowledge bases, and ontologies, to generate
potential candidate answers or find and score additional
evidence on the basis of different features of the question
context. In BStructured Data and Inference in DeepQA,[
Kalyanpur et al. [32] discuss several areas in which evidence
from structured sources has the most impact, include typing
answers, geospatial and temporal constraints, and frames
that formally encode a priori knowledge of commonly
appearing entity types, such as countries and U.S. presidents.
The first example below illustrates the use of structured

sources to determine that the BBlack Hole of Calcutta[

is an Asian locationVan example of a geospatial constraint.
In the next example, by identifying the topic area and the
frame elements involved, the frame subsystem assumes
that the country being asked for is a country whose national
language is Khmer. The third example highlights that
the frame subsystem enumerates all entities of the given type
(U.S. presidents and countries) and looks up the relevant
characteristics.

THE HOLE TRUTH: Asian location where a
notoriously horrible event took place on the night of
June 20, 1756. (Answer: BBlack Hole of Calcutta[)

LANGUAGE: The lead singer of the band Dengue
Fever is from this country & often sings in Khmer.
(Answer: BCambodia[)

PRESIDENTS: The only 2 consecutive U.S.
presidents with the same first name.
(Answer: BJames Madison and James Monroe[)

Puzzles, Final Jeopardy!, and other
Special Questions
In a significant number of cases, Jeopardy! clues can be
nothing like ordinary fact-seeking questions. Consider
Special Questions such as the following:

ARE YOU A FOOD BE[?: Escoffier says to leave
them in their shells & soak them in a mixture of water,
vinegar, salt & flour. (Answer: BEscargots[)

ASTRONOMICAL RHYME TIME: Any song about
Earth’s natural satellite. (Answer: Bmoon tune[)

BEFORE & AFTER: The BJerry Maguire[ star who
automatically maintains your vehicle’s speed.
(Answer: BTom Cruise control[)

SHAKESPEAREAN ANAGRAMS: She’s Bone girl[
King Lear should have been leery of.
(Answer: BGoneril[)

Special Questions are handled by a collection of algorithms
designed to first detect their occurrence and then to favor
the algorithmic paths in the DeepQA architecture specialized
for finding and synthesizing answers. Although the vast
majority of the work on DeepQA was focused on general IR,
NLP, KR&R, and machine learning techniques, a small
part of the overall effort was focused on Jeopardy!-specific
techniques. Special Questions were part of that effort.
In the next paper, BSpecial Questions and Techniques,[
Prager et al. [33] focus on question types that require special
processing, including puzzles and puns.
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Missing links
Consider the following clues known in Jeopardy! as
BCOMMON BONDS[:

COMMON BONDS: feet, eyebrows, and
McDonald’s. (Answer: Barches[)

COMMON BONDS: trout, loose change in your
pocket, and compliments.
(Answer: Bthings that you fish for[)

Realizing and resolving implicit relationships and using
them to interpret language and to answer questions is
generally useful and appears in different forms in Jeopardy!
clues. Although these examples are fun and may seem of
unique interest to Jeopardy!, the ability to find what different
concepts have in common can help in many areas, including
relating symptoms to diseases or generating hypotheses
that a chemical might be effective at treating a disease. For
example, a hypothesis of using fish oil as a treatment for
Raynaud’s disease was made after text analytics discovered
that both had a relationship to blood viscosity [34].
In BCOMMON BONDS[ clues, the task of finding the

missing link is directly suggested by the well-known
Jeopardy! category. However, this is not always the case.
Final Jeopardy! questions, in particular, were uniquely
difficult, partly because they made implicit references to
unnamed entities or missing links. The missing link had to be
correctly resolved in order to evidence the right answer.
Consider the following Final Jeopardy! clue:

EXPLORERS: On hearing of the discovery of George
Mallory’s body, he told reporters he still thinks he was
first. (Answer: BSir Edmund Hillary[)

To answer this question accurately, Watson had to first
make the connection to Mount Everest and realize that,
although not the answer, it is essential to confidently
getting the correct answerVin this case, Edmund Hillary, the
first person to reach the top of Mount Everest. Implicit
relationships and other types of tacit context that help in
interpreting language are certainly not unique to Jeopardy!
but are commonplace in ordinary language. In the next paper
in this journal issue, BIdentifying Implicit Relationships,[
Chu-Carroll et al. [35] discuss the algorithmic techniques
used to solve BCOMMON BONDS[ questions, as well as
other questions, such as the Final Jeopardy! question above,
which require the discovery of missing links and implicit
relationships.

Breaking the question down
Another important technique generally useful for QA is
breaking a question down into logical subparts, so that the
subparts may be independently explored and the results

combined to produce the answer. Consider that to produce an
answer for the clue below, the system might first determine
that the B1831 work[ (which includes the two chapters
mentioned) is the BHunchback of Notre Dame[
and then solve for the author of this book. Nested questions
such as this require decompositions to be processed in
sequence, with the answer to an inner subquestion plugged
into the outer part.

WORLD AUTHORS: Chapters in an 1831 work by
this author include BMaitre Jacques Coppenole[ &
BA Tear for a Drop of Water.[
(Answer: BVictor Hugo[)

Parallel decomposable questions contain subquestions
that can be evaluated independently of each other and the
evidence combined. For example, in the clue below,
the system can independently find characters introduced
in 1894 and then words that come from Hindi for Bbear.[
The system can build confidence in a single answer that
independently satisfies both subquestions. In BFact-Based
Question Decomposition in DeepQA,[ Kalyanpur et al. [36]
discuss techniques for accurately identifying decomposable
questions and then decomposing them into useful and
relevant subparts and the role these algorithms play in
improving Watson’s performance.

FICTIONAL ANIMALS: The name of this character,
introduced in 1894, comes from the Hindi for Bbear.[
(Answer: BBaloo[)

Merging evidence and combining confidence
As an example, Watson may consider 100 candidate
answers for some question. For each of these, it may find
100 pieces of evidence in the form of paragraphs or facts
from databases. Each evidence-answer pair may be scored by
100 independent scorers. Each scoring algorithm produces
a confidence. For any one candidate, there may be on the
order of 10,000 confidence scoresVon the order of one
million in total for a single question.
The final stage in the DeepQA pipeline is dedicated to

ranking all candidate answers according to their evidence
scores and judging the likelihood that each candidate answer
is correct. Its job is to figure out the best way to combine
the confidence of many different scorers across different
pieces of evidence to produce a single probability for
each candidate answer. This is done using a statistical
machine learning framework. The framework in DeepQA
is phase-based, providing capabilities for manipulating
the data and applying machine learning in successive
applications to deal with issues such as normalization,
training with sparse training data, and merging related or
equivalent candidate answers.
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The learning approach facilitates an agile development
environment for DeepQA. Because machine learning is used
to weigh and combine scores, evidence scoring algorithms
can be easily introduced, revised, and reconfigured without
the need for an error-prone manual effort to determine
how to combine the various evidence scores. In BA
Framework for Merging and Ranking of Answers in
DeepQA,[ Gondek et al. [37] describe the machine learning
framework used in DeepQA, explain the challenges, and
evaluate the gains over a baseline machine learning
approach.

Massive parallelism, scale-out, and speed
By the end of 2008, the DeepQA architecture and our
methodology for rapidly advancing the performance
seemed to be working. We were far from champion-level
performance, but we were steadily progressing. Planning
for success required that we begin to consider latencyVthe
time it took to answer a question. To compete with the
best players at Jeopardy!, Watson would have to produce
its best answer and confidence estimation in an average of
about three seconds. At the end of 2008, DeepQA took about
two hours of CPU time to answer a Jeopardy! question,
running on a single 2.6-GHz processor with 16 GB of
memory. This latency would have made for a very boring
Jeopardy! game.
Leveraging DeepQA’s implementation on UIMA, we

employed a new five-person subteam dedicated to scaling
DeepQA by embedding it in UIMA-AS [38]. UIMA-AS
allows any UIMA application to be deployed as a collection
of asynchronous processes that use standard messaging
infrastructure to communicate. Each can be independently
scaled up, as needed, by deploying multiple instances of
the process on a larger number of machines.
From the beginning, we designed DeepQA to implement

an embarrassingly parallel process. First, each search query
could be independently executed. Subsequently, each
candidate answer could start a new independent thread of
processing, where each piece of evidence for each candidate
answer, could be independently scored by more than
100 different algorithms. This parallel computation was
perfectly suited for the type of scale-out supported by
UIMA-AS. In BMaking Watson Fast,[ Epstein et al. [39]
describe how DeepQA was scaled out using UIMA-AS
using 2,880 processors to drive the QA latency down from
two hours to three seconds.

Watson: An artificial Jeopardy! contestant
DeepQA refers to the architecture and implementation of a
system that takes a question and a category as input and
provides a ranked list of answers. Each answer is associated
with probabilities that the answer is correct, based on
analyzed evidence. DeepQA does not play Jeopardy!. To
play Jeopardy!, DeepQA was embedded in a program that

transformed it into Watson, a real-time Jeopardy! contestant.
This involved two principal components: one to handle
the game strategy and the other to interface with the game
itself, i.e., to speak a clue selection, get the clue, press
the buzzer, and keep track of the game.
The strategy component does three things as follows.

1. Decides which clues to select when Watson has control of
the board. This decision is based on prior confidences,
likely positions of Daily Doubles, and Watson’s ability to
adjust its prior confidences on the basis of revealed
answers to former clues in a Jeopardy! category.

2. Determines what to bet on Daily Doubles and on Final
Jeopardy!. This decision is based on prior confidences
and the state of the game, including how much of
the game has been played and all of the players’ scores,
and player modeling.

3. Determines a confidence threshold below which Watson
will not buzz in (even if it could) and above which
Watson will attempt to buzz in. This determination is
based on a risk assessment. For example, if Watson
has a commanding lead, the strategy component may
determine that answering is not worth the risk of getting
the question wrong, in which case, it will raise the
threshold to 98% confidence.

Although the effort to create Watson’s strategy component
was dwarfed by the effort needed to create the DeepQA
engine, very advanced techniques were developed to produce
effective clue-selection, betting, and threshold-setting
strategies. Once the DeepQA engine was smart and fast
enough to compete with champions, the difference in
winning and losing could come down to pure strategy.
In the paper, BSimulation, Learning, and Optimization
Techniques in Watson’s Game Strategies,[ Tesauro et al.
[40] describe the methods and algorithms used to develop
and train Watson’s strategy component.
Finally, to play Jeopardy!, Watson had to Bview[ the

board, keep track of the game status, consider other players
scores, Bread[ a clue, speak its clue selections, speak its
answers, and press down on a handheld buzzer. A system
was built to interface the DeepQA engine and the strategy
component with the official Jeopardy! game control system.
We were focused on the natural-language QA task and
opted not to address visual or auditory clues, so Watson,
in effect, could not see or hear. Jeopardy! had made
allowances for blind contestants in the past. Our goal was
to find a set of equivalent interfaces to the Jeopardy! control
system to keep a level playing field. This does not mean
that Watson was handicapped in any way to make it more
human-like. It is a computer. What it did mean was that
it would not have a practical advantage in interfacing with
the game system. Hence, for example, where human players
had to push a button to buzz in, Watson could not send
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an electronic signal directly to the Jeopardy! controller;
it too would have to mechanically push the button. In
the final paper, BIn the Game: The Interface between
Watson and Jeopardy!,[ Lewis [41] presents the details of
the system that interfaces Watson with the Jeopardy! game
control system, making it a fully functional Jeopardy!
contestant.

Summary of results
After four years of effort by an average of roughly 25 core
researchers and engineers, Watson was ready to play.
We relied on different ways to measure our results:
1) precision and confidence, 2) game-winning performance,
and 3) component performance.
The first two sets of metrics are end-to-end system metrics.

They consider the performance of the whole QA system
on the Jeopardy! task. They are best represented by plotting
QA precision against percentage answered to produce a
confidence curve. Figure 2 shows the confidence curves
for successive versions of the system, starting with the
PIQUANT-based baseline system and progressing through
the various versions of DeepQA. The x-axis gives the
percentage of questions answered, and the y-axis gives
precision (i.e., for those questions answered, the percentage
correctly answered). Each DeepQA curve is produced by
running DeepQA on 200 games’ worth of blind data. These
games contain 12,000 questions that were never viewed
by the developers and never used to train the system.

The data set was used only to test performance on roughly
a quarterly basis.
For comparison, Figure 2 also illustrates the performance

of champion Jeopardy! players. Each blue dot plots the
performance of the winner of an official televised Jeopardy!
game, showing the percentage of questions answered by
the winner and the winner’s precision. The red dots in the
plot show the same information for games won by Ken
JenningsVthe player who had the longest winning streak
on Jeopardy! and who was ultimately defeated by Brad
Rutter in a Tournament of Champions match. Collectively,
we refer to this set of dots as the winner’s cloud. For Watson
to be competitive with champion players, the DeepQA
confidence curve must cut through the top half of the
winner’s cloud. The final confidence curve plotted in
Figure 2 (labeled Bv0.8 11/10[) did just that. The curve
illustrates that over 200 games’ worth of blind data, Watson
delivered an average of 92% precision between 40% and
70% attempted and over 85% Precision@70. This QA
performance gave Watson the ability to compete with top
Jeopardy! players but certainly did not guarantee a win.
The second measurement, which is also an end-to-end

measurement, includes the impact of strategy and speed
in formal real-time gameplay with original Jeopardy!
equipment, against champion-level competition. Before the
game that aired on national television, Watson was pitted
against former Jeopardy! Tournament of Champions players.
All of these players are arguably in the same league as

Figure 2

Incremental progress in answering precision on the Jeopardy! challenge: June 2007 to November 2011.
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Ken Jennings and Brad Rutter and, on any given day, may
defeat either one of them. Watson played 55 real-time
previously unseen games against these players and won 71%
of them. To do this, Watson computed its confidences
and its best answer in approximately three seconds, on
average, and included a very competitive betting strategy.
The third set of metrics is distributed across the individual

component algorithms that populate the DeepQA processing
pipeline. Each paper in this special issue presents
individual component technologies and describes how they
affect end-to-end performance. However, it is important
to realize that the quantity and diversity of components used
to implement DeepQA make it extraordinarily robust and
flexible. The system does not heavily depend on any
one of them. We have run many ablation experiments
consistently showing that all but the most dramatic
of ablations have very little effect.
For example, when we run experiments, in which we

ablate a single evidence scorer from the full Watson system,
we rarely see a statistically significant impact on a few
thousand questions, and we never see an impact of 1% or
greater. However, if we ablate all of the evidence scorers, this
heavily ablated version of Watson answers only 50%
correctly. It produces a confidence curve that is insufficient
to compete at Jeopardy!. Consequently, to illuminate and
measure the effectiveness of individual components, the
papers in this journal describe a variety of different
approaches.
One important method used in several of the papers relies

on a simpler configuration of Watson we have built called
the Watson answer-scoring baseline (WASB) system.
The WASB system includes all of Watson’s question
analysis, search, and candidate generation components.
It includes only one evidence-scoring component: an
answer-typing component that uses a named-entity detector.
The use of named-entity detection, to determine whether a
candidate answer has the semantic type that the question
requires, is a very popular technique in QA (as discussed
in detail in [27]), which is why we included it in our baseline.
We have evaluated the impact of adding various components
to the WASB system [27–29, 32] and found that we are
able to examine and compare the individual effectiveness

of components for which simple ablations from the full
system do not provide statistically meaningful insights given
the size of the test sets we use. We see some individual
components that provide an impact on accuracy in the range
of 2% to 5% when added to the WASB system.
Jeopardy! proved to be an excellent challenge problem.

The goal to beat human champions drove the creation
and advancement of the DeepQA architecture and the
AdaptWatson methodology. Both proved indispensable for
conducting large-scale open-domain QA research and, more
generally, language understanding research. In addition to
winning against human champions at Jeopardy!, the project
allowed us to produce leading component-level metrics
on core NLP technologies, including parsing, relation
detection, named-entity disambiguation, and textual
entailment. These results are summarized in Table 1. For
each task, we report the performance of the technology used
in Watson on public benchmark sets, which, in each case,
leads over state-of-the-art comparisons found in [19, 42–44].
We also compare against our performance on these same
tasks at the beginning of the project, which shows that
working toward the Jeopardy! challenge helped drive
substantial gains and fundamental improvements in our
NLP capabilities that extend beyond Jeopardy!.

Future directions
Watson, as developed for Jeopardy!, attempts to provide a
single correct answer and associated confidence. We would
like to see applications of the DeepQA technology move
toward a broader range of capabilities that engage in
dialogues with users to provide decision support over large
volumes of unstructured content. The notion of a computer
system helping to produce and provide evidence for
alternative solutions has been around for decades. Such
knowledge-based decision support tools, however,
traditionally suffer from the requirement to manually craft
and encode formal logical models of the target domain,
such as medicine, where these models represent the concepts,
their relationships, and the rules that govern their interaction.
It can be prohibitively inefficient to do this for broad
bodies of knowledge. It is slow and expensive to maintain
these formal structures as the raw knowledge grows and as

Table 1 DeepQA technology performance on public benchmark sets. (ACE: automatic content extraction; RTE:
recognizing textual entailment.)
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the ways in which different user groups view the domain
and formulate queries evolve.
We envision developing Watson 2.0 as an interactive

decision support capability that strikes a balance somewhere
between a search system and a formal knowledge-based
system. The goal is to consider not simply queries but also
entire problem scenarios, as well as to produce hypothetical
solutions and compelling evidence, not by manually
producing a rich and complete model of the domain
beforehand but rather by automatically consuming and
analyzing natural-language sources of knowledge. We
imagine a result that can deliver value in evidence-based
decision support over enormous breadths of knowledge at
much lower costs.
Healthcare is an exciting area to drive this technical vision.

Many problem-solving situations, such as diagnosing a
medical problem and then treating it, require viewing the
patient’s case as a problem scenario. Patients and caregivers
are overwhelmed with hoards of ever-changing data
represented in mostly unstructured resources, and they are
losing confidence that they have efficient enough access
to the knowledge they need to rationalize important medical
decisionsVwhether it be finding the right diagnosis or
justifying the best treatment options. Efficient personalized
analysis of options and evidence sourced in reference
material, textbooks, journals, and structured resources can
empower patients and caregivers alike, reducing costs and
improving patient outcomes. To advance DeepQA and

take Watson into healthcare, we plan to move from taking
specific questions as input to analyzing entire problem
scenarios, represented, for example, by a patient’s electronic
medical record. This will require a richer set of analytics
that must discover potential problems in the electronic
medical record and generate meaningful questions to help
in diagnosis or treatment.
Watson 2.0 will have to produce evidence profiles and

supporting evidence that enable the user to explore the
specific evidence justifying a diagnostic hypothesis or
treatment alternatives, in support of securing more informed
decisions. The notion of an evidence profile is described
by Ferrucci et al. [45]. Adapting evidence profiles for the
medical domain would allow caregivers to explore the
justifications for answers in terms of relevant evidential
dimensions. An example, illustrated in Figure 3, shows a
proposed set of clinical dimensions of evidence for a patient
from Connecticut, with a chief complaint consisting of
eye pain and inflammation, blurred vision, headache, fever,
and circular rash. Each dimension of evidenceVfindings,
demographics, symptoms, and family historyVaggregates
individual pieces of evidence. A healthcare provider can
observe the contribution of each dimension of evidence to
the overall confidence score, as well as drill-down into a
particular dimension to evaluate the efficacy of each
contributing piece of evidence.
Jeopardy! represents a constrained interaction model,

where the system could not engage in a dialogue to resolve

Figure 3

Evidence profiles for differential diagnosis in medicine.
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ambiguities or ask for additional information that might
improve its confidence. We imagine Watson 2.0 will support
mixed-initiative dialogue that extends over time as a problem
case is explored. This will allow the system to more
efficiently prune its search by gathering specific information
from the user. For instance, in the process of answering a
question, Watson may identify a gap in its understanding and
generate learning questions that help it fill in knowledge
about language and meaning in a particular domain. Watson,
for example, could ask its user the following question:
Does the phrase food would Bget stuck when eating[ suggest
that the patient has Bswallowing difficulty[? This provides
an opportunity for Watson to immediately improve its
analysis and learn from its users’ responses for future use.
Although Watson’s win in Jeopardy! represents a

landmark success, there is a way to go before we see
systems that fluently engage in dialogue and reason over
natural-language content. Where the path to this future may
have been uncertain, our work with DeepQA has set a course
and given us tremendous confidence that we may get
there yet.
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