
Typing candidate answers
using type coercion

J. W. Murdock
A. Kalyanpur

C. Welty
J. Fan

D. A. Ferrucci
D. C. Gondek

L. Zhang
H. Kanayama

Many questions explicitly indicate the type of answer required.
One popular approach to answering those questions is to develop
recognizers to identify instances of common answer types
(e.g., countries, animals, and food) and consider only answers on
those lists. Such a strategy is poorly suited to answering questions
from the Jeopardy!i television quiz show. Jeopardy! questions
have an extremely broad range of types of answers, and the most
frequently occurring types cover only a small fraction of all answers.
We present an alternative approach to dealing with answer types.
We generate candidate answers without regard to type, and for each
candidate, we employ a variety of sources and strategies to judge
whether the candidate has the desired type. These sources and
strategies provide a set of type coercion scores for each candidate
answer. We use these scores to give preference to answers with
more evidence of having the right type. Our question-answering
system is significantly more accurate with type coercion than it
is without type coercion; these components have a combined
impact of nearly 5% on the accuracy of the IBM Watsoni
question-answering system.

Introduction
The Jeopardy!** question BIn 1902 Panama was still part
of this country[ explicitly indicates that the correct answer
is a country. To answer questions such as this one, it is
important to be able to distinguish between candidate
answers that are countries and those that are not. Many
open-domain question-answering (QA) systems (e.g., [1–4])
adopt a type-and-generate approach by analyzing incoming
questions for the expected answer type, mapping it into
a fixed set of known types, and restricting candidate answers
retrieved from the corpus to those that match this answer type
(using type-specific recognizers to identify the candidates).
The type-and-generate approach suffers from several

problems. Restricting the answer types to a fixed and
typically small set of concepts makes the QA system
brittle and narrow in its applicability and scope. Such a
closed-typing approach does not work for sets of questions
that cover a very broad range of topics. Answer types in
Jeopardy! are extremely diverse and are expressed using
a variety of lexical expressions (e.g., Bscarefest[ when
referring to horror movies) and are sometimes vague (e.g.,
Bform[) or meaningless (e.g., Bit[). When questions ask

for types of answers not covered by the fixed set of types,
the QA system either fails to generate answers at all or uses
some catchall type (e.g., BOTHER[) for which the rest
of the system is typically not well suited. Performance on
questions whose answer types are outside the fixed type
system is significantly worse than when the answer type is
in the type system. Even when the system does have a type
that is appropriate, the type-and-generate approach is highly
dependent on the precision and the recall of the typing
component. That component acts as a candidate selection
filter; thus, any answer that it rejects cannot be considered
at all, regardless of how much other evidence supports it.
In contrast to the type-and-generate approach, IBM

Watson* uses a generate-and-type framework. This approach
has implications not only for the typing components but
also for other parts of the technology underlying Watson:
DeepQA. Many of the DeepQA search and candidate
generation components do not make use of type information
when identifying candidate answers [5]. As a result, many
candidate answers are generated without any attempt to
determine whether that candidate is an instance of the type
that the question is asking for. Instead, reasoning about
the type of an answer is performed later in the DeepQA
architecture. The portion of the DeepQA architecture

�Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

J. W. MURDOCK ET AL. 7 : 1IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012

0018-8646/12/$5.00 B 2012 IBM

Digital Object Identifier: 10.1147/JRD.2012.2187036



in which candidate answers are evaluated is hypothesis and
evidence scoring. The subset of hypothesis and evidence
scoring that focuses on determining whether the candidate
answer satisfies the answer-type requirements of the question
is type coercion (TyCor). Results from each of the TyCor
components are then treated as distinct features used by
a statistical classifier, along with features from many other
components; the classifier is used to generate a confidence
score for each answer during DeepQA’s final merging
and ranking.
The term Btype coercion[ has been used with different

meanings in other contexts. In programming languages,
Btype coercion[ refers to the idea that one can force some
value with one data type to change to a different but
compatible data type by putting it into a context where
that other data type is required [6]. For example, in many
programming languages, the expression 0.5 þ 7 would
require that the compiler or the interpreter convert the
integer, i.e., 7, into a floating-point number, i.e., 7.0, before
adding it to another floating-point number; that implicit
change of type is called type coercion. Pustejovsky [7]
describes a similar phenomenon in linguistics, in which a
speaker can take a noun with one semantic type and imply
a different but compatible semantic type by putting it into
a context where that other semantic type is required. For
example, the word Bbook[ in the sentence BBob finished
a book[ refers to a physical object. This sentence coerces
an interpretation of Bbook[ as an activity, i.e., the implied
activity of reading the book. As with that of Pustejovsky,
our paper involves forcing a particular semantic-type
interpretation on some instance. However, Bcoercion[ in
our paper involves forcing an interpretation of some answer
to a question based on the type of answer that the question
asks for. For example, if a question asks BWhat novel
won the Pulitzer in 1937?[ and a respondent asserts
BGone with the Wind[, the respondent is implicitly forcing
a specific interpretation of BGone with the Wind[, i.e.,
the novel. Some possible answers cannot be coerced into
some types. for example, there is no interpretation of
BMargaret Mitchell[ that refers to a novel; thus, this
could not be a valid answer to this question. Our TyCor
components attempt to coerce consistent interpretations
of the candidate answer and the desired type. To the extent
these components are able to do so, DeepQA treats the result
as evidence that the answer could be correct.
Watson includes numerous TyCor components that

employ different sources of typing information and different
logic, but all that fit into the logical framework described
in this paper. There are two inputs to each TyCor
component.

• The lexical answer types (LATs) that the question is
asking for, as identified by DeepQA’s question analysis
module [8]. A LAT is a text string indicating the type of

answer being sought (e.g., Bactor,[ Bcountry,[ and
Bscarefest[).

• A candidate answer from DeepQA’s candidate
generation module [5].

The output of each TyCor component is a numerical
score indicating the extent to which that component has
concluded that the candidate answer is an instance of the type
indicated by the LAT. Unlike many QA systems, Watson
does not use answer-typing results as a Bhard filter,[
discarding that any answer that it cannot conclude has
the desired type. Instead, each TyCor score is a distinct
feature that is used by DeepQA’s statistical answer ranking
algorithm to assign a confidence value to each candidate
answer and to rank the answers according their confidence
value [9]. Correct answers in the training data are likely to
have evidence that they are instances of the desired type
(since they are). As a result, DeepQA’s statistical answer
ranking algorithm tends to prefer answers with higher TyCor
scores over answers with lower TyCor scores, but this
preference is not absolute, and an answer with little or no
evidence that it has the desired type can be still selected
as the final answer, if there is overwhelming evidence that
this answer satisfies the other requirements of the question
(particularly when the other candidate answers also have
little or no TyCor evidence).
There is no single fixed set of types that is used by all

of the TyCor components. Instead, each TyCor component
is responsible for interpreting the LAT to the extent that
it needs to do so. Some TyCor components have a fixed
list of structured types that they are able to process; those
components are not useful at all when they are not able to
map the LAT to one of their types. Other TyCor components
have instances tagged with types in the form of text strings;
those components compute whether the LAT is consistent
with the known types for a candidate answer by matching
the LAT to those types linguistically (e.g., using dictionary
resources to identify synonyms).
This paper begins with a discussion of answer typing

in Jeopardy!. It then explains how this paper fits into
the DeepQA architecture. Next, it describes the shared
logical framework for TyCor. After that, it provides brief
descriptions of some of our TyCor components. Finally,
this paper presents evaluation results, related work,
future work, and conclusions.

Answer types in Jeopardy!
In our attempt to build a QA system capable of rivaling
expert human performance on answering open-domain
questions, we started with a type-and-generate approach
for generating candidate answers, simply because that is what
we had. However, in our early analysis of the domain of
questions from the TV quiz show Jeopardy!, we found
this approach to be problematic.

7 : 2 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



Human language is remarkably rich when it comes to
assigning types; nearly any word can be used as a type,
particularly in some questions.

• Invented in the 1500s to speed up the game, this
maneuver involves two pieces of the same color.
(Answer: BCastling[)

• The first known airmail service took place in Paris in
1870 by this conveyance. (Answer: Bhot-air balloon[)

• In 2003, this Oriole first sacker was elected to the
Baseball Hall of Fame. (Answer: BEddie Murray[)

• Freddy Krueger was introduced in this 1984 scarefest.
(Answer: BA Nightmare on Elm Street[)

• When hit by electrons, a phosphor gives off
electromagnetic energy in this form. (Answer: Blight[)

• Whitney’s patent for this revolutionized the garment
industry. (Answer: Bthe cotton gin[)

Such variability highlights one of the intrinsic problems
with the type-and-generate approach, i.e., we cannot reliably
predict what types the questions will ask about and what
their instances are. We analyzed 20,000 past Jeopardy!
questions and observed a very long tail of types (see
Figure 1). Although the type system for our named entity
detector was among the largest of the state-of-the-art QA
systems (more than 100 types), it covered less than half
the questions. Roughly 5,000 different type words were used
in the 20,000 questions; more than half of these occurred
fewer than three times in the question set, and roughly
12% occurred once. As we continued to evaluate on hidden
data, we found the 12% number to be roughly constant;
new types were being introduced at this rate (one in eight

questions on the average). In addition, 15% of questions
did not explicitly assert a LAT.
These observations led us to conclude that we need

to be open and flexible about types, treating them as a
property of question and answer combined. In other words,
instead of finding candidates of the right type, we want
to find candidates (in some way) and judge whether each
one is of the right type by examining it in context with
the answer type from the question. Furthermore, we need
to accommodate sources of type and instance data that
collectively reflect the same descriptive diversity as these
questions.

TyCor in the DeepQA Architecture
Our TyCor capabilities fit into the DeepQA architecture [10].

Question analysisVDeepQA’s question analysis includes
many subcomponents that classify and extract
relevant information from the question [8]. One kind
of information extracted during question analysis is
a LAT, i.e., a word in the question that indicates the type
of answer being sought. LAT recognition is easier than
mapping to a semantic type; although imperfect, our
LAT detection has an F1 measure of 0.8 (evaluated on
3,500 randomly selected questions [8]). LAT detection
includes a confidence measure, which is factored into
the TyCor scores.

Candidate generationVCandidate generation in DeepQA
employs a wide variety of strategies including identifying
candidates in both text and structured sources [5]. In some
cases, candidate generation results in a disambiguated
entity, e.g., one for which a Wikipedia** URL has been

Figure 1

Distribution of the 30 most frequent lexical answer types in 20,000 Jeopardy! questions.

J. W. MURDOCK ET AL. 7 : 3IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



identified. For example, if the candidate answer is found
in a Wikipedia document as the anchor text of some
hypertext link, candidate generation can use the target
of that link to provide a disambiguation for the entity.
The inputs to TyCor include these candidate answers
(with disambiguation results, if available) plus the LATs
identified in the question analysis.

Hypothesis and evidence scoringVThe TyCor components
are a subset of the hypothesis- and evidence-scoring
components. During the hypothesis- and evidence-scoring
phase, many different algorithms and sources are used
to evaluate evidence for each candidate answer.

Final-answer merging and rankingVAn overall
determination of the final answer must combine the scores
from each scoring algorithm for each answer in a way
that weighs each score as appropriate for the context
given by the question [9]. The TyCor scores are among
the many features used by this component.

TyCor logical framework
The TyCor answer-scoring components take as input one
or more LATs and a candidate answer. They each return a
score indicating the strength of the evidence that it is possible
to coerce some interpretation of the candidate answer into
some instance that is consistent with some interpretation
of the LATs. Since language does not often distinguish
between instantiation (e.g., BSecretariat was a horse[)
and subclassing (e.g., BA pony is a horse[), the TyCor
components must allow for this; TyCor gives an answer
a high score if it can be interpreted as a subclass or an
instance of a LAT.
For each LAT, the TyCor component performs the

four steps illustrated in Figure 2 and described in detail
below. The TyCor component then combines scores across

LATs to produce a score for the candidate answer. The four
steps involve using some source (e.g., a knowledge-base)
to determine whether the source indicates that the answer has
the desired type. This involves mapping the candidate answer
and LAT to instances and types in the source, and then
consulting the source to see if it claims that some instance
corresponding to the candidate answer is consistent with
some type corresponding to the LAT. Specifically, here are
the four steps.

Entity disambiguation and matching (EDM)VEDM finds
entities in the typing source that correspond to the
candidate answer. EDM must account for both polysemy
(the same name may refer to many entities) and synonymy
(the same entity may have multiple names). Each source
may require its own special EDM implementations that
exploit properties of the source; for example, DBpedia [11]
encodes useful naming information in the entity identifier
(ID). EDM implementations typically try to use some
context for the answer, but in purely structured sources,
this context may be difficult to exploit.

Type retrieval (TR)VTR retrieves the types for each entity
identified by EDM. For some TyCors, such as those
using structured sources, this step exercises the primary
function of the source and is simple. In unstructured
sources, this may require parsing [12] or other semantic
processing [13] of the natural language.

Predicate disambiguation and matching (PDM)VPDM
identifies types that correspond to the LAT found. In some
sources, this is the same algorithm as EDM; in others,
type lookup requires special treatment because those
sources encode types and instances differently. In TyCors
that use unstructured information as a source, the PDM
step may simply return the LAT itself. PDM strongly

Figure 2

High-level architecture of the TyCor component involving four core steps. For example, in YAGO TyCor, given candidate Bdifficulty swallowing[ and
lexical answer type (LAT) Bmanifestation[, EDM maps candidate to DBpedia entity BDysphagia[; TR obtains WordNet type BSymptom[ for the
DBpedia instance; PDM maps LAT to WordNet concept BCondition[; and the final TR step finds a hyponymy relation between BSymptom[ and
BCondition[ producing a positive TyCor score.

7 : 4 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



corresponds to notion of word-sense disambiguation with
respect to a specific source.

Type alignmentVThe results of the PDM and TR steps
must be then compared to determine the degree of match.
In sources containing a formal-type taxonomy, this
may include checking the taxonomy for subsumption,
disjointness, etc. For sources in which types are
natural-language text, alignment may require determining
whether the text of the LAT and the text of the
retrieved type for the answer are consistent. This is a
challenging natural-language processing (NLP) task
that uses parsing [12] and depends on resources such
as WordNet** [14] for finding synonyms, hypernyms, etc.

Note that EDM is skipped if candidate generation was
able to produce a disambiguated candidate answer with a
specified unique ID that the TyCor is able to use. For
example, the Wiki-Category TyCor (described later) has
types associated with specific Wikipedia entries; thus, the
Wiki-Category TyCor will skip EDM when it encounters
a candidate answer that was generated with a known
Wikipedia URI.
EDM, PDM, and TR can each return multiple results.

For example, one could start with a candidate string BGone
with the Wind[ and a LAT Bbook[; EDM could tie the
candidate to a variety of entities, one of which is a movie
and one of which is a novel. We may have more or less
confidence in each of those entities, and those confidence
scores are factored into the TyCor score. Similarly, each
of those candidates can have multiple types found in TR.
Moreover, the LAT Bbook[ could correspond to a type
of published work, a phenomenon in graph theory, or
something else. Type alignment attempts to align all of
the types retrieved by TR (for all of the entities identified
by EDM) to all of the types identifies by PDM.
We refer to TyCor as Bcoercing[ the candidate answer

to the LAT because we are not committing early to a
single interpretation at the EDM, PDM, and TR stages.
For example, instead of first disambiguating BGone with
the Wind[ and then deciding if it is an instance of the type
we want, we remain open to a variety of possibilities after
EDM and consider the types for all of those possibilities.
Thus, the type alignment step is able to Bforce[ a particular
interpretation of both the candidate and the LAT by
identifying the interpretations of each that best fit each
other and basing its conclusions on those interpretations.
These four steps constitute a logical framework, i.e.,

conceptually all of our TyCor components follow this
progression of steps. Many subsets of the TyCor components
share common implementations of one or more of these
steps. For example, several of our TyCor sources (described
in the next section) provide type information for entities
defined by Wikipedia URLs; the TyCor components that
use those sources share a common EDM implementation.

In future work, we intend to formalize and refine this
framework (see the section on future work).
TyCor components that do not find any evidence that

the candidate answer has the desired type indicate a neutral
result (i.e., they neither support nor refute the answer).
In addition, a few TyCor components are able to identify
specific evidence that the answer does not have the desired
type. TyCor components that are able to identify negative
evidence are described as such in the next section. The
logic used to identify negative evidence is generally different
from the logic used to identify positive evidence. There is
no a priori reason to believe that a model should treat a
strong negative TyCor score as being as bad as a strong
positive TyCor score is good. Consequently, TyCor
represents positive and negative scores as distinct features
for use by DeepQA answer ranking [9]. TyCor components
that consider negative typing evidence have two features
in the final model, and these two features are constrained
by the framework such that each TyCor component can
have only one of these two features with a nonzero value
per candidate answer. It is possible that different TyCor
components produce conflicting scores, e.g., one produces
positive evidence and another produces negative evidence.
Generally speaking, negative typing evidence will reduce
confidence in an answer, but it will not remove the answer
or invalidate it. Since there is always error, it must be
possible for other evidence in Watson to override negative
typing evidence that may be incorrect.

TyCor sources and strategies
Watson uses a suite of more than ten different TyCor
components for scoring candidate answers against type
evidence. Some of our TyCor components share algorithms
but use different sources, whereas others use different
algorithms on the same sources. The algorithms mainly
involve different approaches to the four TyCor steps as
appropriate for the source, with an eye toward accurately
accounting for the error in the steps (most notably EDM
and alignment) to produce a meaningful score.
Some TyCor components have a well-defined set of

structured types. Some examples of TyCor components
of this sort are given.

YAGO (Yet Another Great Ontology)VMany candidate
answers in our domain are titles of Wikipedia articles.
Each of these is an entity in DBpedia, i.e., a linked open
data source automatically compiled from Wikipedia
infoboxes (i.e., information boxes) and article templates.
Entities (articles) in DBpedia have types represented in a
resource description framework (RDF) from YAGO [15],
i.e., a semi-automatically constructed type taxonomy
based on WordNet, corpus analysis, and Wikipedia.
In addition, we have manually added roughly
200 disjointness constraints (e.g., Ba Person is not a

J. W. MURDOCK ET AL. 7 : 5IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



Country[) between high-level concepts in the taxonomy.
Using a special-purpose reasoner to check for subsumption
and disjointness, YAGO TyCor can produce negative
evidence when a candidate matches only types that are
disjoint from all the types matching the LAT.

GenderVThis TyCor applies only to questions asking for
a person of a specified gender. It scores the evidence that
a candidate answer is of the appropriate gender using a
custom source of data mined from articles about people
by determining which pronouns are most unambiguously
or most commonly used to refer to the person. Gender
TyCor can produce negative evidence if the LAT indicates
one gender and the answer is found to be of another.

Closed LATVCertain LATs identify types with enumerable
lists of instances, such as countries, U.S. states, and
U.S. presidents. When such a list is available, this TyCor
component is capable of producing a negative-type score
for candidate answers that are not in the list. Of course,
as with everything described here, confidence is never
perfect because of name-matching issues and the
possibility that the LAT is used in a nonstandard way.
For example, the mythical country of Gondor is not
on our closed list but could conceivably be the answer
to a country-LAT question. Because all of the lists
are believed to be complete (at least for the most obvious
interpretation of the LAT), closed LAT TyCor asserts
negative evidence for a candidate answer if it knows the
LAT and does not have that answer on its list.

LexicalVOccasionally, LATs specify some lexical constraint
on the answer, e.g., that it is a verb, or a phrase, or a
first name. Lexical TyCor uses various special-purpose
algorithms based on the LAT for scoring these constraints.
Lexical TyCor is able to produce negative evidence for
some types (e.g., it can conclude that any answer that
contains no blank space is not consistent with the
LAT Bphrase[).

Named entity detection (NED)VTyCor uses a rule-based
named entity detector that was originally designed for
a classical type-and-generate QA system [16]. That
named entity detector recognizes instances of more than
100 structured types, most of which are among the top
100 LATs. The named entity detector identifies zero
or more structured types corresponding to the LAT,
and it annotates the candidate answer with zero or more
structured types that it instantiates. NED TyCor determines
whether any structured type that the detector found for
the LAT is consistent with any structured type that the
detector found for the candidate answer.

WordNetVWordNet is used in several other TyCor
components to assist in the type alignment phase;
however, it does contain some limited information about
well-known entities such as famous scientists and a
few geographic and geopolitical entities. It also has
high coverage of biological taxonomies. WordNet TyCor

uses both hyponym and instance-of links in WordNet
to match the candidate answer string to the LAT.
This TyCor component has very high precision but
low recall.

Other TyCor components have types that are arbitrary
natural-language text. Type alignment for these TyCors
requires processing that natural language. We do this by
aligning terms with corresponding positions in the syntactic
structure of the types (as recognized by DeepQA’s parsing
and predicate-argument structure [12]). Once terms are
aligned, we determine whether they are consistent using
a variety of sources such as Wikipedia redirects and
WordNet. Some examples of TyCor components of this
sort are given.

Wiki-CategoryVWikipedia articles are frequently tagged
with explicit categories in the form of natural-language
text. All of these categories are stored in DBpedia. The
Wiki-Category TyCor uses the category names for an
entity as types. Wiki-Category does not use the category
structure (e.g., subcategory), because this adds too
much noise.

Wiki-ListVWikipedia and many other Web sources contain
lists of things associated in some way, such as BList of
Argentinean Nobel Prize Winners[. We collect these lists
and use the text following BList of[ as types for the
instances on the list.

Wiki-IntroVBy convention, the first sentence of a Wikipedia
article identifies one or more types for the entity described
in the article, e.g., BTom Hanks is an American actor,
producer, writer, and director[ or BThe lion (Panthera leo)
is one of the four big cats in the genus Panthera[.
Wiki-Intro TyCor utilizes a special source mined
from these intro passages using a variety of syntactic
patterns.

IdentityVIdentity TyCor uses the candidate answer text
as a source of typing information. For example, Identity
TyCor can recognize that Bthe Chu River[ is a river
by looking at the text of the answer, without any prior
knowledge of that entity.

PassageVMany candidate answers occur in a passage of
text found either in primary search [5] or in supporting
evidence retrieval [17]. Occasionally, that passage
asserts the candidate’s type, e.g., BChristian Bale is the
first actor to really do Batman justice[. Passage TyCor
uses pattern-based relation detection [13] to identify
assertions that some entity has some type and attempts
to match the asserted type to the LAT.

PRISMATICVPRISMATIC [18] is a repository of corpus
statistics. PRISMATIC TyCor measures the frequency
with which the candidate answer is directly asserted to
be an instance of the LAT (using the same type assertion
detection patterns used in Passage TyCor).

7 : 6 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



Example
The four steps of the TyCor logical framework are differently
implemented in the various TyCor strategies. For example,
consider a question asking for an Bemperor[ and the
candidate answer BNapoleon.[ Here is how a few of the
TyCor strategies handle different steps of the framework for
this example.

EDMVTyCor strategies that use Wikipedia or derived
sources (e.g., Wiki-List, Wiki-Category, and YAGO) try
to determine what DBpedia entry BNapoleon[ refers to.
They find dbpedia:Napoleon is as a strong match. They
also find a variety of other matches such as dbpedia:
Napoleon_%28card_game%29 (for which it assigns a
lower score). The WordNet TyCor looks up BNapoleon[
and finds three different word senses. Passage TyCor
identifies occurrences of Napoleon in some supporting
passage during this step. Other TyCors such as NED
and Identity TyCor simply take the candidate string
BNapoleon[ and declare that to be the entity.

TRVThose TyCor strategies that identify a formal entity
[e.g., a DBpedia URL or a WordNet synset (or set of
synonyms)] during EDM are generally able to look up one
or more types for that entity in some structured source.
For example, YAGO TyCor is able to find formal YAGO
types for the DBpedia entities identified during EDM.
Similarly, WordNet TyCor finds other synsets that the
synsets for Napoleon are either instances or hyponyms
of; in this case, WordNet labels the primary sense of
BNapoleon[ as an instance of the primary sense of
Bemperor[. NED TyCor gets a structured type from the
named entity detector, e.g., it labels BNapoleon[ as a
NAME reference to a PoliticalLeader. Some TyCors
produce types in this stage, which are not entries in
a formal ontology but rather are simply text strings.
For example, Wiki-List provides the type BFrench
monarch[ for dbpedia:Napoleon because there is a
page on Wikipedia labeled BList of French monarchs[ that
has an entry that links to http://en.wikipedia.org/wiki/
Napoleon_I_of_France, which is a Wikipedia redirect
to http://en.wikipedia.org/wiki/Napoleon. Those TyCor
strategies that produce text strings for types defer the
issue of making sense of that type until the type
alignment step.

PDMVTyCor strategies that use formal types look up those
types in this step. For example, WordNet looks up the
LAT Bemperor[ and identifies four synsets for that word.
YAGO TyCor finds formal types in the YAGO ontology
corresponding to the string Bemperor[. NED TyCor
examines the NED results on the question and determines
whether the LAT in the question was labeled with some
named entity type. In this case, Bemperor[ is marked
as a NOMINAL reference to a PoliticalLeader. As with
TR, some TyCors implement PDM by simply returning the

input string, deferring the work of making sense of
that string.

Type alignmentVFor TyCors such as WordNet, YAGO,
and NED that produce formal types in a type hierarchy
from TR and PDM, the type alignment process involves
aligning types in the hierarchy, i.e., checking for
subsumption, disjointness, etc. For example, WordNet
TyCor checks to see whether the entity type (from TR) is
a hyponym of the question’s desired type (from PDM).
In contrast, those strategies that simply produce text strings
from TR and PDM need to determine the extent to which
the known entity type (from TR) implies the desired
answer type (from PDM). For example, Wiki-List tries
to determine whether it can conclude that a BFrench
monarch[ is an Bemperor[ by parsing both (e.g., finding
that Bmonarch[ is the headword of BFrench monarch[)
and matching terms using resources such as WordNet
and Wikipedia redirects. Many of these strategies use a
single configurable implementation of this capability but
use a variety of different configurations, which provide
different tradeoffs among precision and recall.

Evaluation
We have evaluated our TyCor mechanisms by comparing the
effectiveness of our QA system with and without TyCor
components. All experiments reported here were performed
on a set of 3,508 previously unseen Jeopardy! questions.
Figure 3 shows a line graph comparing the system with

all of the TyCor strategies versus the system with none,
and a bar graph showing the impact of our most effective
individual TyCor strategies. The horizontal axis of the line
graph shows the percentage of questions answered, with
preference given to questions where the confidence in the
answer is highest. For example, the 70% point on the
axis shows how the system performs when it attempts to
answer only 70% that it is most confident of (we refer to this
value as Precision@70). The vertical axis of the line graph
indicates the fraction of those questions that are correctly
answered. For example, the line for the complete Watson
system with all of the TyCor components shows a precision
of 0.875 at 70% of the questions answered; for 70% of
the questions for which Watson was most confident in its
answer, it answered 87.5% of those questions correctly.
In contrast, the full Watson system without TyCor answered
only 81.5% of questions correctly for the 70% for which
it was most confident. The difference, i.e., 6.0%, in
Precision@70 is statistically significant and is greater than
the impact on the overall accuracy (i.e., Precision@100),
which is 4.9%. The greater impact at 70% than 100%
suggests that TyCor is even more useful for assessing
confidence in Watson’s answers than it is for selecting
answers; when Watson is able to use its confidence score
to decide which questions to attempt to answer, it benefits
even more from TyCor.

J. W. MURDOCK ET AL. 7 : 7IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



The bar graph shows the impact on accuracy of 12 of our
most interesting TyCor components. We define impact on
accuracy here as the difference between the accuracy of
the QA system with no TyCor components and the accuracy
of the system with only the specified TyCor component
(accuracy is the percentage of all questions that are correctly
answered). The first 12 bars show the impact of individual
TyCor components, and the final bar shows the impact
of all of the TyCor components together. The individual
components shown have varying impact on accuracy of up
to 3%, and all of them together have an impact on accuracy
of 4.9%. That difference is also visible on the graph, by
comparing the rightmost points on the lines with no TyCor
and all TyCor.
We measure statistical significance for accuracy using

McNemar’s test with a correction for continuity [19], and
we consider p G :05 to be significant. By that standard, the
difference between Lexical TyCor and no TyCor is not
statistically significant. This is not surprising because Lexical
TyCor is a highly specialized component that addresses a
small number of unusual LATs. Each of the other TyCors
shows a significant impact versus no TyCor, and all TyCor
shows a significant impact versus any of the TyCors alone.
Precision@70 is not amenable to McNemar’s test because
it does not reflect a mean over a set of independent
observations (e.g., raising the confidence to an answer for

one question can cause some other question to drop out
of the 70% with the highest confidence). Consequently,
we use Fisher’s randomization test [20] to assess significance
for this metric.
One concern that we have with the results of ablating

TyCor from the full Watson system is that some of the
impact of TyCor is blunted by the existence of other scoring
components in Watson that are not explicitly focused on
TyCor but do implicitly correlate with answers having the
correct type. For example, the Passage Term Match
algorithm [17] counts the frequency with which each
candidate answer co-occurs in retrieved passages with terms
in the question. Since the LAT is in the question, it is one
of the terms that is matched and counted by Passage Term
Match. In many cases, we would expect answers that are
instances of the LAT to frequently co-occur with the LAT in
text; thus, we would expect the signal from the Passage Term
Match feature to overlap with the signal that our TyCor
components produce, blunting their measured impact in
ablation studies. Consequently, we have further evaluated
our TyCor components on the Watson answer-scoring
baseline system [10], which is also used for other DeepQA
evaluations [13, 17, 21]; that baseline includes all of the
DeepQA question analysis [8] plus search and candidate
generation [5], but no deep and shallow evidence scoring
other than NED TyCor. Answer ranking in the Watson

Figure 3

Impact of type coercion on the complete Watson QA system.

7 : 8 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



answer-scoring baseline system uses the same statistical
answer-ranking techniques as the full Watson system but has
a much more restricted set of features to work with. It has
all of Watson’s search and candidate generation features
(e.g., a rank and a score from a keyword search engine for a
passage where the answer was found). However, it does
not have any features that are derived from the deep analysis
of supporting evidence.
Starting with the Watson answer-scoring baseline, we

compare a variant with no TyCor (not even the TyCor
with NED) to variants with one TyCor component added,
as well as to the baseline system with all TyCor components
added. Figure 4 shows those results. TyCor has a greater
impact in this simpler configuration, with some components
showing more than 4% impact and the entire set showing
more than 8%. Each of the components except Identity
TyCor and Lexical TyCor provides a significant impact
versus no TyCor, and again, all TyCor provides a significant
impact versus any one TyCor.
The Watson answer-scoring baseline system includes some

signal that overlaps with answer typing, because several
of the search and candidate generation algorithms make use
of the LAT in finding sources of candidate answers [5].
Consequently, we built an extremely simple Bultralite[
baseline system as an additional point of comparison for
TyCor. The ultralite system includes only text document
search [5]; it does not search through any knowledge-bases

or text passages. Figure 5 shows the effectiveness of
TyCor in that configuration. The effect on accuracy is even
greater, with some components showing 8% to 10% and
all of the components together resulting in an impact of more
than 15%. Again, each of the components except Lexical
TyCor provides a significant impact versus no TyCor,
and again, all TyCor provides a significant impact versus
any one TyCor.
As noted earlier, the NED TyCor uses a NED component

that was originally built for a classical type-and-generate
QA system that was consistently one of the highest
performers in competitive QA evaluations [1]. As such,
the comparison between the NED TyCor performance
and the all TyCor performance in Figures 3–5 demonstrates
the impact of our additional sources and strategies versus
a traditional QA baseline. That difference is 2.4% in the
full Watson system, 4.6% in the Watson answer-scoring
baseline system, and 8.5% in the ultralite baseline system;
those differences are all significant. We have also conducted
experiments in which we completely discarded candidates
that are rejected by NED TyCor, to more closely approximate
a type-and-generate approach (for comparison purposes).
Those experiments have shown that discarding candidates
rejected by NED TyCor performs worse than using NED
TyCor as the only TyCor feature and even worse than
no TyCor at all, because it discards many correct answers
that DeepQA is able to select using other features.

Figure 4

Impact of type coercion on the Watson answer-scoring baseline QA system.

J. W. MURDOCK ET AL. 7 : 9IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



Related work
Our paper differs in two major respects from existing work
on answer typing for QA.

• We employ a diverse collection of typing resources,
including highly precise but narrow coverage
hand-crafted resources (e.g., NED, closed LAT), broad
community generated resources (e.g., Wiki-Category,
YAGO), and resources automatically extracted from
natural-language text (e.g., Wiki-Intro, PRISMATIC).
This diversity allows us to cover a very wide range
of types while still having very high confidence for
those types that are well understood.

• We do not discard or ignore answers that we cannot
coerce to the given LAT. Instead, we retain all answers;
results from each TyCor are provided as a distinct
feature that is used by DeepQA answer ranking.

Traditional QA systems (e.g., [1–4]) have tightly
integrated capabilities for finding candidate answers and
answer typing, so that only strings that appear to have
the desired answer type are ever considered as candidate
answers. There is some existing work that has decoupled
typing and generation to some extent. QUARTZ [22] is a QA
system that uses a statistical mapping from LATs to WordNet
for PDM, and collocation counts for the candidate answer

with synonyms of the mapped type for TR. In [23], the
approach has been taken a step further by combining
correlation-based typing scores with type information from
resources such as Wikipedia, using a machine-learning-based
scheme to compute type validity. Both [22] and [23]
are similar to our TyCor approach in which they defer
type-checking decisions to the latter in the QA pipeline
and use a collection of techniques and resources (instead
of relying on classical NED) to check for a type match
between the candidate and the expected answer type in
the question. In our approach, the type match information
is not used as a filter to discard candidate answers;
instead, the individual TyCor scores are combined
statistically with other answer scores in DeepQA answer
ranking. A similar approach to the combination of our
NED and Wiki-Category is presented in [24]. In that work,
the traditional type-and-generate approach is used when
question analysis can recognize a semantic answer type in
the question and revert to Wikipedia categories. As with [22]
and [23], typing is treated as a hard filter, not as supplying
features for classifying answers.
Another unique characteristic of our TyCor is the

framework that separates the various steps of EDM, PDM,
type alignment, etc. The algorithms (and the resources)
that we use to implement these steps are complex and
variedVhaving either much more precision or much broader

Figure 5

Impact of type coercion on the Bultralite[ baseline QA system.

7 : 10 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



scope compared with existing work. For example, the only
use of Wikipedia content for type inference in [23] is through
a shallow heuristic that searches for the mention of the
expected answer type on the Wikipedia page of a candidate
answer (mapped using an exact string match to the page
title) and makes a yes/no decision for the type validity on
the basis of this finding. In contrast, in our Wikipedia-based
TyCors, we use an EDM algorithm to map the candidate
answer string to a Wikipedia page using a variety of
resources such as Wikipedia redirects, extracted synonym
lists, and link-anchor data. We then use different kinds of
type information expressed in Wikipedia (e.g., lexical types
in the introductory paragraphs and Wikipedia categories)
as types to match to the LAT. Similarly, whereas [22] uses
the notion of complement-type sets, which are approximated
using heuristics such as sibling types, we have explicitly
identified pairs of types in YAGO that are disjoint, and we
use disjointness information as evidence against candidate
answers whose types are disjoint with the LAT.
Our PRISMATIC, Wiki-Intro, and Passage TyCor

components use NLP analyses to extract typing information
from natural-language text. The automatic detection of
typing relations is a long-studied topic in NLP [25–27].
A variety of existing projects attempt to use relation detection
of this sort to build large-scale entity-type knowledge-bases
[28, 29]. PRISMATIC and Wiki-Intro TyCors both follow
this basic approach; they differ from each other in which
PRISMATIC runs over a large Web corpus, whereas
Wiki-Intro draws results exclusively from the first sentence
of Wikipedia articles. As a result, PRISMATIC TyCor
has broader coverage and has statistics for each entity-type
pair (e.g., statistics indicating how often BThe Godfather[
is asserted to be a Bfilm[ and how often BThe Godfather[
is asserted to be a novel). In contrast, Wiki-Intro has much
less data, but the data that it does have is very precise
and is disambiguated (attached to a specific Wikipedia URL,
e.g., http://en.wikipedia.org/wiki/The_Godfather is a Bfilm[).
Existing research on mining answer types from text is
closer to PRISMATIC TyCor in this respect. As described
earlier, we are able to benefit from the advantages of each
by posting them (along with all of our other TyCor results)
as distinct features for DeepQA statistical answer ranking.

Future work
As noted in the BTyCor logical framework[ section of
this paper, all of our TyCor components share a common
logical framework consisting of four processing subtasks.
The logical framework is not implemented as a common
software artifact that is shared across all TyCors. In future
work, we intend to build an explicit software framework
that formalizes this design.
The fact that the logical architecture is not explicit in

the implementation was convenient early in our development
process because many of our TyCor components address

dramatically different challenges with different information
requirements. For example, type alignment in YAGO
TyCor takes a pair of structured types as input, and type
alignment in Wiki-List TyCor takes a pair of lexical types
as input; the former involves reasoning in a formal ontology,
whereas the latter involves NLP. This can be addressed
by a careful object-oriented design, e.g., by defining a type
alignment interface with abstract input types and providing
different implementations of those input types to provide
the different functionality required.
As work on TyCor has matured, the lack of an explicit

implementation of the logical framework has become an
increasingly significant obstacle to TyCor research. For
example, we would like to be able to rapidly test different
approaches to combining scores across the different steps
of the process; doing so now requires modifying different
pieces of code in different TyCor implementations. An
explicit software framework would provide a common
code base that integrates the steps of the TyCor process.
Given our experience with the diverse range of TyCors

in Watson, we believe that we are now ready to design
and implement an explicit software framework. The key
challenge in this paper will be precisely identifying the
proper level of abstraction, i.e., distinguishing capabilities
and data structures that are shared across all implementations
from those that are specific to particular TyCor algorithms
and sources. We now have a reasonable, large, and diverse
set of TyCor components that can provide motivating
examples for that work.
Future work on DeepQA will involve a wide variety of

concrete application areas. Consequently, flexibility and
rapid adaptation to new technical challenges will be essential.
In some cases, that will involve plugging new knowledge
sources into existing logic, and in others, the logic will
also require revisions. A pluggable extensible framework
for TyCor components and subcomponents will make it
easier to customize DeepQA to address new challenges.

Conclusion
TyCor is an approach to finding evidence regarding whether
a given candidate answer has a specified lexical type
(i.e., a type characterized by natural-language text). DeepQA
includes a logical framework for TyCor and a variety of
specific instantiations using an assortment of structured
and unstructured sources. TyCor is used in DeepQA as a
form of evidence scoring; it is performed after answers
are generated and before they are ranked. The TyCor
components provide separate scores that are used as
distinct features by DeepQA answer ranking.
Our TyCor components all instantiate a logical framework

composed of four elements. EDM maps candidate answer
strings to entities. TR identifies (structured or lexical) types of
entities. PDM maps LATs to answer types. Type alignment
determines whether the types for the candidate answer

J. W. MURDOCK ET AL. 7 : 11IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



(from TR) are consistent with the desired type for the
question (as determined by PDM).
The TyCor components have a significant impact on the

accuracy of a QA system applied to the Jeopardy! task.
The components complement each other, as demonstrated
by the fact that our QA system does better with all
of the TyCor components than it does with any one of
them alone.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., Wikimedia Foundation, or Trustees of Princeton
University in the United States, other countries, or both.

References
1. J. Chu-Carroll, K. Czuba, P. A. Duboue, and J. M. Prager,

BIBM’s PIQUANT II in TREC2005,[ in Proc. 14th TREC,
Gaithersburg, MD, 2005. [Online]. Available: http://www.
mendeley.com/research/ibms-piquant-ii-trec2005/.

2. H. Cui, K. Li, R. Sun, T.-S. Chua, and M.-Y. Kan, BNational
University of Singapore at the TREC-13 question answering
main task,[ in Proc. TREC, Gaithersburg, MD, 2004.

3. S. Harabagiu, D. Moldovan, C. Clark, M. Bowden, J. Williams,
and J. Bensley, BAnswer mining by combining extraction
techniques with abductive reasoning,[ in Proc. TREC,
Gaithersburg, MD, 2003.

4. N. Schlaefer, P. Gieselmann, and G. Sautter, BThe Ephyra
QA System at TREC 2006,[ in Proc. 15th TREC, 2006, pp. 1–10.

5. J. Chu-Carroll, J. Fan, B. K. Boguraev, D. Carmel, D. Sheinwald,
and C. Welty, BFinding needles in the haystack: Search and
candidate generation,[ IBM J. Res. & Dev., vol. 56, no. 3/4,
Paper 6, pp. 6:1–6:12, May/Jul. 2012.

6. G. Ford and R. Wiener, Modula-2: A Software Development
Approach. Hoboken, NJ: Wiley, 1986.

7. J. Pustejovsky, BType coercion and lexical selection,[ in
Semantics and the Lexicon, J. Pustejovsky, Ed. Dordrecht,
The Netherlands: Kluwer, 1993.

8. A. Lally, J. M. Prager, M. C. McCord, B. K. Boguraev,
S. Patwardhan, J. Fan, P. Fodor, and J. Chu-Carroll, BQuestion
analysis: How Watson reads a clue,[ IBM J. Res. & Dev., vol. 56,
no. 3/4, Paper 2, pp. 2:1–2:14, May/Jul. 2012.

9. D. C. Gondek, A. Lally, A. Kalyanpur, J. W. Murdock, P. Duboue,
L. Zhang, Y. Pan, Z. M. Qiu, and C. Welty, BA framework for
merging and ranking of answers in DeepQA,[ IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 14, pp. 14:1–14:12, May/Jul. 2012.

10. D. A. Ferrucci, BIntroduction to FThis is Watson_,[ IBM J. Res. &
Dev., vol. 56, no. 3/4, Paper 1, pp. 1:1–1:15, May/Jul. 2012.

11. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, and S. Hellmann, BDBpediaVA crystallization
point for the web of data,[ J. Web Semantics Sci., Services
Agents World Wide Web, vol. 7, no. 3, pp. 154–165, Sep. 2009.

12. M. C. McCord, J. W. Murdock, and B. K. Boguraev, BDeep
parsing in Watson,[ IBM J. Res. & Dev., vol. 56, no. 3/4,
Paper 3, pp. 3:1–3:15, May/Jul. 2012.

13. C. Wang, A. Kalyanpur, J. Fan, B. K. Boguraev, and D. C. Gondek,
BRelation extraction and scoring in DeepQA,[ IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 9, pp. 9:1–9:12, May/Jul. 2012.

14. G. A. Miller, BWordNet: A lexical database for English,[
Commun. ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995.

15. F. M. Suchanek, G. Kasneci, and G. Weikum, BYAGO: A core
of semantic knowledge-unifying WordNet and Wikipedia,[ in
Proc. 16th Int. WWW Conf., Banff, Canada, 2007.

16. J. M. Prager, E. W. Brown, A. Coden, and R. Radev,
BQuestion-answering by predictive annotation,[ in Proc.
SIGIR, Athens, Greece, 2000, pp. 184–191.

17. J. W. Murdock, J. Fan, A. Lally, H. Shima, and B. K. Boguraev,
BTextual evidence gathering and analysis,[ IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 8, pp. 8:1–8:14, May/Jul. 2012.

18. J. Fan, A. Kalyanpur, D. C. Gondek, and D. A. Ferrucci,
BAutomatic knowledge extraction from documents,[ IBM J. Res.
& Dev., vol. 56, no. 3/4, Paper 5, pp. 5:1–5:10, May/Jul. 2012.

19. J. L. Fleiss, Statistical Methods for Rates and Proportions,
2nd ed. New York: Wiley, 1981.

20. M. D. Smucker, J. Allan, and B. Carterette, BA comparison of
statistical significance tests for information retrieval evaluation,[ in
Proc. 16th ACM CIKM, 2007, pp. 623–632.

21. A. Kalyanpur, B. K. Boguraev, S. Patwardhan,
J. W. Murdock, A. Lally, C. Welty, J. M. Prager, B. Coppola,
A. Fokoue-Nkoutche, L. Zhang, Y. Pan, and Z. M. Qiu,
BStructured data and inference in DeepQA,[ IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 10, pp. 10:1–10:14, May/Jul. 2012.

22. S. Schlobach, D. Ahn, M. de Rijke, and V. Jijkoun,
BData-driven type checking in open domain question answering,[
J. Appl. Logic, vol. 5, no. 1, pp. 121–143, Mar. 2007.

23. A. Grappy and B. Grau, BAnswer type validation in question
answering systems,[ in Proc. RIAOVAdaptivity, Personalization
and Fusion of Heterogeneous Information, Paris, France, 2010,
pp. 9–15.

24. D. Buscaldi and P. Rosso, BMining knowledge from Wikipedia
for the question answering task,[ in Proc. Int. Conf. Lang. Resour.
Eval., 2006, pp. 727–730.

25. R. Amsler, BThe structure of the Merriam-Webster Pocket
Dictionary,[ Ph.D. Dissertation, Univ. Texas, Austin, TX, 1980.

26. M. Chodorow, R. Byrd, and G. Heidorn, BExtracting semantic
hierarchies from a large on-line dictionary,[ in Proc. 23rd Annu.
Meet. Assoc. Comput. Linguistics, 1985, pp. 299–304.

27. M. Hearst, BAutomatic acquisition of hyponyms from large text
corpora,[ in Proc. 14th COLING Conf., 1992, vol. 2, pp. 539–545.

28. S. Soderland, A. Ritter, and O. Etzioni, BWhat is this, anyway:
Automatic hypernym discovery,[ in Proc. AAAI Spring Symp.
Learn. Reading Learn. Read, 2009, pp. 1–6.

29. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, Jr.,
and T. M. Mitchell, BToward an architecture for never-ending
language learning,[ in Proc. 24th AAAI Conf., 2010,
pp. 1306–1313.

Received August 18, 2011; accepted for publication
November 18, 2011

J. William Murdock IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (murdockj@us.
ibm.com). Dr. Murdock is a member of the IBM DeepQA Research
Team in the T. J. Watson Research Center. In 2001, he received a
Ph.D. degree in computer science from Georgia Tech, where he was
a member of Ashok Goel’s Design and Intelligence Laboratory.
He worked as a postdoctorate with David Aha at the U.S. Naval
Research Laboratory. His research interests include natural-language
semantics, analogical reasoning, knowledge-based planning, machine
learning, and self-aware artificial intelligence.

Aditya Kalyanpur IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (adityakal@us.
ibm.com). Dr. Kalyanpur is a Research Staff Member at the IBM
T. J. Watson Research Center. He received his Ph.D. degree in
computer science from the University of Maryland in 2006. His
research interests include knowledge representation and reasoning,
natural-language processing, statistical data mining, and machine
learning. He joined IBM in 2006 and worked on the Scalable Highly
Expressive Reasoner (SHER) project that scales ontology reasoning
to very large and expressive knowledge bases. Subsequently, he joined
the algorithms team on the DeepQA project and helped design the
Watson question-answering system. Dr. Kalyanpur has over 25
publications in leading artificial intelligence journals and conferences
and several patents related to SHER and DeepQA. He has also chaired
international workshops and served on W3C Working Groups.

7 : 12 J. W. MURDOCK ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



Chris Welty IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (cawelty@gmail.com).
Dr. Welty is a Research Staff Member in the Semantic Analysis
and Integration Department at the T. J. Watson Research Center.
He received a Ph.D. degree in computer science from Rensselaer
Polytechnic Institute in 1995. He joined IBM in 2002, after spending
6 years as a professor at Vassar College, and has worked and published
extensively in the areas of ontology, natural-language processing,
and the Semantic Web. In 2011, he served as program chair for the
International Semantic Web Conference, and he is on the editorial
boards of the Journal of Web Semantics, the Journal of Applied
Ontology, and AI Magazine.

James Fan IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (fanj@us.ibm.com).
Dr. Fan is a Research Staff Member in the Semantic Analysis and
Integration Department at the T. J. Watson Research Center, Yorktown
Heights, New York. He joined IBM after receiving his Ph.D. degree
at the University of Texas at Austin in 2006. He is a member of
the DeepQA Team that developed the Watson question-answering
system, which defeated the two best human players on the quiz
show Jeopardy!. Dr. Fan is author or coauthor of dozens of
technical papers on subjects of knowledge representation, reasoning,
natural-language processing, and machine learning. He is a member
of Association for Computational Linguistics.

David A. Ferrucci IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (ferrucci@us.ibm.
com). Dr. Ferrucci is an IBM Fellow and the Principal Investigator
for the DeepQA Watson/Jeopardy! project. He has been at the
T. J. Watson Research Center since 1995, where he leads the
Semantic Analysis and Integration department. Dr. Ferrucci focuses on
technologies for automatically discovering meaning in natural-language
content and using it to enable better human decision making. He
graduated from Manhattan College with a B.S. degree in biology and
from Rensselaer Polytechnic Institute in 1994 with a Ph.D. degree
in computer science specializing in knowledge representation and
reasoning. He has published papers in the areas of artificial intelligence,
knowledge representation and reasoning, natural-language processing,
and automatic question answering.

David C. Gondek IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (dgondek@us.ibm.
com). Dr. Gondek is a Research Staff Member and Manager at the
T. J. Watson Research Center. He received a B.A. degree in
mathematics and computer science from Dartmouth College in 1998
and a Ph.D. degree in computer science from Brown University in
2005. He subsequently joined IBM, where he worked on the IBM
Watson Jeopardy! challenge and now leads the Knowledge Capture
and Learning Group in the Semantic Analysis and Integration
Department.

Lei Zhang IBM Research Division, China Research Lab, Haidian
District, Beijing, 100193, China (tozhanglei@qq.com). Dr. Zhang
received his Ph.D. degree in computer science and engineering
from Shanghai Jiao Tong University in China in 2005. His research
interests include knowledge representation, Semantic Web, information
retrieval, and statistical machine learning. After his Ph.D. study, he
worked as a Research Staff Member in the Information and Knowledge
Department of IBM Research–China. Since 2005, he and his team
have worked on Semantic Web technologies and semantic search
and their applications in the healthcare domain. Since 2008, he and his
team have worked on using structured knowledge (including Semantic
Web data) to help question-answering in the DeepQA project. He is
active in several academic communities and is one of the major
initiators of the China Semantic Web Symposium series, which started
in 2007. He has been program committee member of conferences such
as WWW, IJCAI (International Joint Conferences on Artificial
Intelligence), ISWC (International Semantic Web Conference), etc.

More recently, he was one of the local organizers of the ISWC 2010
conference.

Hiroshi Kanayama IBM Research Division–Tokyo, Yamato-shi,
Kanagawa 2428502, Japan (hkana@jp.ibm.com). Mr. Kanayama is
a Staff Researcher in IBM Research–Tokyo. In 2000, he received
a master’s degree from the Graduate School of the University of Tokyo,
for research on Japanese syntactic analysis. Since joining IBM
Research, his research has focused on several types of deep language
analysis including machine translation, sentiment analysis, and
knowledge extraction from unstructured data.

J. W. MURDOCK ET AL. 7 : 13IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 7 MAY/JULY 2012



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


