Relation extraction and
scoring in DeepQA

Detecting semantic relations in text is an active problem area in
natural-language processing and information retrieval. For question
answering, there are many advantages of detecting relations in the
question text because it allows background relational knowledge

to be used to generate potential answers or find additional evidence
to score supporting passages. This paper presents two approaches to
broad-domain relation extraction and scoring in the DeepQOA
question-answering framework, i.e., one based on manual pattern
specification and the other relying on statistical methods for pattern
elicitation, which uses a novel transfer learning technique, i.e.,
relation topics. These two approaches are complementary; the
rule-based approach is more precise and is used by several DeepQA
components, but it requires manual effort, which allows for coverage
on only a small targeted set of relations (approximately 30).
Statistical approaches, on the other hand, automatically learn how to
extract semantic relations from the training data and can be applied
to detect a large amount of relations (approximately 7,000).
Although the precision of the statistical relation detectors is not

as high as that of the rule-based approach, their overall

impact on the system through passage scoring is statistically
significant because of their broad coverage of knowledge.
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is very useful for question answering because it enables

The IBM DeepQA question-answering framework allows for
a wide variety of candidate answer generators and scorers
that enable it to generate candidate answers and compute

a match (or alignment) between the question text and

the supporting textual evidence found for a given candidate
[1-3]. The text analytics used in these modules rely primarily
on surface-level information or the predicate-argument
structure (PAS) [4] of the text fragments under consideration.
In this paper, we focus on analytics that go beyond explicit
lexical and syntactic information and instead detect

implicit semantic relations in the text.

Table 1 illustrates instances of such implicit semantic
relations in Jeopardy!** data. For instance, the question
““The Screwtape Letters’ from a senior devil to an under
devil are by this man better known for children’s books”
contains an instance of the author relation, whose
arguments are identified as “this man” and “The Screwtape
Letters”. Detecting such implicit relations in the question text
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background knowledge base to be used to find potential
answers to the question (for the examples in Table 1,
the relations are from the DBpedia knowledge base [5]; thus,
we can look up potential answers in this resource based on
the relation detected).

Another application of semantic relation detection is for
passage scoring. Consider the question

“This hockey defenseman ended his career on June 5,
2008~

and a supporting passage

“On June 5, 2008, Wesley announced his retirement
after his 20th NHL season.”

The question and the passage have very few keywords in
common (especially verbs and nouns), and thus, any
similarity between the two computed with explicit term
matching-based approaches [2] would be low. However,
if a relation detector can find that the question and the
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Table 1

Examples of Jeopardy! questions and detected relations.

Jeopardy! question

Relation detected (relations are from the
DBpedia knowledge base)

MOTHERS & SONS: Though only separated by one
year in real life, she played mother to son Colin Farrell

in “Alexander.”

THE DEVIL: "The Screwtape Letters" from a senior
devil to an under devil are by this man better known for

children's books.
THE LONE REPRESENTATIVE: Michael Castle

from this state with 3 counties: New Castle, Kent and

Sussex.

Starring (she, “Alexander”)

Author (man, “The Screwtape Letters™)

Residence (“Michael Castle”, state)

passage share a common semantic relation, e.g.,
ActiveYearsEndDate (also defined in the DBpedia
knowledge base), an appropriate scoring algorithm can arrive
at a higher semantic similarity score.

In this paper, we first present a high-precision approach for
detecting semantic relations based on a handcrafted set of
patterns over the PAS representation of text. We then present
an approach based on statistical pattern discovery and
aggregation, i.e., Topicalized Wide Relation and Entity
eXtraction (TWREX), which achieves much higher recall
relation detection by training support vector machines
(SVMs) [6] on a large number of relations defined in
DBpedia using training data from Wikipedia** [7].

Our relation extraction and passage-scoring components
make use of several other DeepQA components, including
the English Slot Grammar (ESG) parser [8], entity
disambiguation and matching (EDM) [9], predicate
disambiguation and matching (PDM) [9], and Answer
Lookup [2]. We evaluate our relation detection at two
levels. At the component level, we measure how well our
approach detects semantic relations in Wikipedia data, ACE
data [10], and Jeopardy! questions. At the system level, we
evaluate the overall end-to-end impact of relation detection
on the question-answering performance of IBM Watson*.

This paper begins with a description of our rule-based
relation detection technique. It then described our statistical
relation detection and scoring algorithms. The next section
describes how this paper fits in the DeepQA architecture.
The last two sections summarize the experimental results
and provide some concluding remarks.

Rule-based relation extraction

A relation can be often expressed in multiple ways lexically
and syntactically. For instance, an authorOf relation
might be expressed not only with nouns such as “author”
but also with verbs such as “write”, “compose”, “pen”,

or “publish”; furthermore, these might appear in different
syntactic configurations (such as passive versus active,

e.g., “Originally written by Alexander Pushkin as a poem”;
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nominalized or verbal forms of the same underlying
predicate, e.g., “This ‘French Connection’ actor coauthored
the 1999 novel ‘Wake of the Perdido Star’”; or exploiting the
semantic load of complement slots to relational nouns,

e.g., “playwright of ‘The Maids’”, “*X-Files’ star”).

There is effectively an unlimited number of ways to realize
a relation instance in text. In many cases, however, basic
principles of economy of expression and/or conventions of
genre will ensure that certain systematic ways of expressing a
relation are repeatedly used [11] to the extent that patterns
can be observed and categorized. The intuition behind
rule-based relation detection derives from such observations,
i.e., that a rule can be stated that will detect multiple instances
of a pattern.

Lexical analysis of historical Jeopardy! questions gives
us lists of verbs and nouns in the arts-and-entertainment
(A&E) domain that are strongly indicative of deep semantic
relations such as “write”, “compose”, “star”, “play”,
“biography”, and so forth; these are complemented by the
semantic type assignment to named entities such as “David
Lean” (a Director) and “Autumn Sonata” (a Film).

The choice of relations for which we have hand-created
recognizers is not arbitrary. Words such as “film”, “author”,
and “novel” are prominently at the head of the distribution
of lexical answer types (the kinds of entities that
questions are asking about; see [9]); furthermore, in well
over 50% of questions asking for them, there is an instance
of a semantic relation over what the question is asking
about, which is potentially useful for structured lookup or
passage scoring.

As simple examples of a relation, consider locutions such
as “a Mary Shelley tale”, “the Saroyan novel”, “Twain’s
travel books”, and “a 1984 Tom Clancy thriller”. The key
observation is that a simple pattern is at play here, interacting
with a system of semantic types ([Author] and [Prose], in this
case; the fact that “thriller” is ambiguous between [Prose]
and [Film] should not detract from the argument), and is
dependent on lexical and syntactic context. The value of such
a pattern in an authorOf relation detector would be
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determined by our ability to impose semantic constraints
upon the elements of candidate phrases and on the frequency
of occurrence of such locutions in the domain data.
Typically, relation detection for any relations would be
sensitive to a number of patterns, each one, such as the one
illustrated here, fairly productive in itself.

Pattern elements are typically syntactic constituents, and
a quality parser can reliably identify such constituents,
as well as dependency links among them; an ontology of
types can be used for semantic constraint checking. In our
case, a deep syntactic parser (i.e., ESG), a mapper from
dependency trees to PAS, and a comprehensive semantic
type system are essential enabling technologies, providing
the scaffolding for effective pattern writing [4]. Still,
identifying productive patterns and then developing the
capability to normalize the different inputs to a canonical
representation is expensive, and we have done this for
relations that are (A) particularly prominent in the domain or
(B) are broadly manifested across all question data.

In Jeopardy!, (A) holds for questions referring to the
A&E domain, broadly construed to capture relationships
between animate agents and works of art (e.g., actors in films
or plays; authors of prose, poetry, or music; and characters
in fictional works). Examples of (B) concern the more
generic properties of many Jeopardy! lexical answer types
(properties such as place or date of birth, nationality,
alternative naming conventions, time stamping and temporal
linking, and geospatial constraints). The following
examples illustrate instances of relations for which we have
manually developed rule sets.

1. Robert Redford and this “Picket Fences” star both
debuted as soldiers in the 1962 drama “War Hunt.”
(actorIn, actorOf, timeStamp)

2. Born in Winsted, he practiced law in Connecticut before
he wrote “Unsafe at Any Speed.” (bornWhere,
authorOf)

3. This Norwegian star of such movies as “Autumn Sonata”
was actually born in Japan. (nationalityOf,
actorIn, bornWhere)

4. The main library at the University of Northern Colorado
is named for this alumnus who wrote an epic of Colorado
in 1974. (namedAfter, authorOf)

Example 1 contains three actorIn and two actorOf
relations (binding actors and films, and actors and characters,
respectively), with the focus (the part of the question
that is a reference to the answer; “this ‘Picket Fences’ star” in
the example) participating in two of them. Example 2
binds the focus as argument to a bornIn and an
authorOf relation: bornIn (focus:he,Winsted),
authorOf (focus:he,Unsafe At Any Speed).
Example 3 highlights three properties of the focus, namely,
actorIn, nationalityOf, and bornWhere.
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Example 4 illustrates a name-sharing association between
the focus and another named entity.

Relation detection patterns are written in Prolog and apply
unification pattern matching over PAS [4, 12]. Unification
can be traced to resolution-based theorem proving [13]
and has been shown to be a particularly convenient and
effective way to manipulate directed acyclic graphs. As such,
it was adopted in the natural-language processing (NLP)
community as the underlying representational and
interpretational device for formal grammar specification and
feature structure manipulation [14—16]. The Prolog language
is, in effect, an efficient unification interpreter [17].

We sought parsimony in rule specification by strongly
typing the relations and exploiting the lexical space of
relation expression, as well as similarities in the syntax
of expressing different relations (where appropriate).

For instance, in the A&E domain, patterns such as

authorOf —> np : [Author| —> nadj
—> [Prose|. // “thisWordsworthpoem”

have parallel versions for relations such as directorOf
and composerOf

directorOf —> np : [Director| —> nadj
—> [Film]. // “aDavidLeanclassic”
composerOf —> np : [Composer] —> nadj

—> [Music]. // “thisPucciniopera”

Consequently, a metapattern for creatorOf can be
developed and, as appropriate, specialized, depending on
fine-grained semantic typing of the pattern elements.

In DeepQA, the rule-based relation detection module can
detect approximately 30 relations. On average, each relation
is associated with 10-20 rules.

Statistical approaches for relation extraction and
passage scoring

The open-domain setting of DeepQA means that a large set
of relation types must be covered in order to have a
substantial impact on overall system performance. Targeting
just a handful of relations would affect only a small subset
of the data and is unlikely to have a significant impact.

In this section, we present our statistical approach for relation
detection, which is able to detect more than 7,000 relations
spanning a diverse set of topics.

The organization of this section is as follows: We first
describe the internal representation of relation instances,
and on the basis of that, we outline the approach to
automatically extract training data from Wikipedia and
DBpedia. Next, we present “relation topics”, i.e., the most
novel part of our approach. The last two subsections discuss
how relation topics are used in relation extraction and
unstructured passage scoring. Figure 1 shows a diagram of
our relation topic-based relation detection component.
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Figure 1

Statistical relation detection module.

Internal representation of relation instances

In our statistical approach, each sentence expressing a
relation is represented by a set of features, including:

1) types of relation arguments; 2) syntactic features such

as subject and words in the dependency path between

two arguments; and 3) words in the whole sentence.

For example, a sentence expressing ActiveYearEndDate
relation,

“Sauve announced his retirement from the NHL in
1989”,

is represented by the following features: argument, type
[Person, Athlete]; argument,type [Year]; syntactic features in
the dependency path [subj, mod_vprep, objprep]; words in
the dependency path [announce (verb), in (prep)]; and
words in the whole sentence [Sauve (noun), announce (verb),
his (adj), retirement (noun), from (prep), NHL (noun),
in (prep), 1989 (noun)].

In this representation, the two arguments are ordered,
with the subject coming first and the object second.

If the order is not given, we consider both combinations.
The YAGO (Yet Another Great Ontology) type system
[18] is used to assign types to the relation arguments. Given
an arbitrary entity, we retrieve its YAGO types using the
EDM [9] or PDM components [9]. EDM maps the textual

mention of an entity to an entity resource in a structured
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knowledge base. Given the uncertainty associated with the
mapping process, it typically involves mapping to a
collection of entities, each with an associated confidence
level, i.e., roughly a measure of the probability of the
accuracy of the mapping. The knowledge base used in our
EDM algorithm is Wikipedia. The Wikipedia page URLs are
transformed into the corresponding DBpedia URIs, which
then can be mapped to YAGO types. PDM is analogous to
EDM. It is used to map the lexical answer type of an entity to
YAGO types.

The Slot Grammar parser ESG [8] is used to parse each
sentence into a dependency tree that shows both surface
structure and deep logical structure. Each tree node has a
word-sense predicate with its logical arguments, a list of
morphosyntactic features, and the left and right modifiers of
the node. On the basis of the ESG parse, we extract a
dependency path between two arguments. A dependency tree
example is shown in Figure 2. Note that there could be
multiple paths between two arguments in the tree. We only
take the shortest path into consideration. Seventy-six
syntactic features such as subject and object are extracted
from the ESG parse for the given sentence and are used
in our feature set.

Both the dependency path and the sentence features are
filtered for five parts of speech, i.e., adjective, adverb, noun,
preposition, and verb (thus, there is no determiner in the
features for the above example).
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Sauve announced his retirement from the NHL in 1989
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Figure 2

Example of a dependency tree.

Extracting training data from Wikipedia

and DBpedia

Our training data is composed of two parts, i.e., relation
instances from DBpedia and sentences describing the
relations from the corresponding Wikipedia pages.

Collecting the training data
Since our relations correspond to Wikipedia infobox
properties, we use an approach similar to that described in
[19] to collect positive training data instances. We assume
that a Wikipedia page containing a particular infobox
property is likely to express the same relation in the text of
the page. We further assume that the relation is most likely
expressed in the first sentence on the page that mentions
the arguments of the relation. For example, the Wikipedia
page for “Albert Einstein” contains an infobox property
“alma mater” with value “University of Zurich”, and the first
sentence mentioning the arguments is “Einstein was awarded
a PhD by the University of Zurich”, which expresses the
relation. When looking for relation arguments on the page,
we go beyond (sub)string matching and use link information
to match entities that may have different surface forms.
Using such techniques, we have collected 620,000
examples characterizing 7,628 DBpedia relations. Our
heuristic approach returns reasonably good results but brings
in about 20% noise (estimated by manual inspection) in the
form of false positives. For example, if someone was
born and died in the same place, the sentence we extract
for the birthPlace relation might actually express the
deathPlace relation instead. This is a concern when
building an accurate statistical relation detector. To address
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this issue, we have developed a keyword filter and an
argument type filter to automatically remove some of the
noisy data.

Retrieving types for the arguments

To get precise type information for the arguments of a
DBpedia relation, we use the DBpedia knowledge base [5]
and the associated YAGO type system [18]. Note that,

for almost every Wikipedia page, there is a corresponding
DBpedia entry that has captured the infobox properties as
resource description framework (RDF) triples. Some of the
triples include type information, where the subject of the
triple is a Wikipedia entity and the object is a YAGO type for
the entity. For example, the DBpedia entry for the entity
“Albert Einstein” includes types corresponding to Scientist,
Philosopher, and Violinist, etc. These YAGO types are also
linked to appropriate WordNet** concepts [20], providing
accurate sense disambiguation. Thus, for any entity argument
of a relation we are learning, we obtain sense-disambiguated
type information, which is used as a feature in the relation
detection model.

Relation topics

Similar to the topics defined over words [21, 22], we define
relation topics as multinomial distributions over the existing
DBpedia relations. One relation topic example is as
follows: [ doctoraladvisor (0.683366),
doctoralstudents (0.113201), candidate
(0.014662), academicadvisors (0.008623),
notablestudents (0.003829), college
(0.003021), operatingsystem (0.002964),
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Input: “Sauve announced his retirement from the NHL in 1989.”

Sauve announced his retirement from the NHL in 1989.

arg1 dependency path BOW

arg2 Other features,

!

Relation Topics

Topic features ﬂ

VARY,

like syntactic features

| SVM Classifier |

Figure 3

Features used in statistical relation extraction.

combatant (0.002826), influences

(0.002285), training (0.002148),...], where
doctoraladvisor is a DBpedia relation and 0.683366
is its contribution to this relation topic. The length of

this topic vector is 7,628, which is the total number of
DBpedia relations.

All such relation topics are automatically constructed using
an unsupervised analysis of the correlations between
existing relations regarding one or a set of components
(argument;, noun in the dependency path, etc.).

Relation topics are defined at multiple scales, are human
interpretable, are orthonormal to each other, and can be
used as basis functions to re-represent the questions and
passages. We project each relation instance onto this relation
topic space, resulting in a set of features to represent the
instances in the topic space. The methodology to construct
relation topics, and features, is presented in [23].

Some argument types and words occur in multiple
relations. They are used to model the correlations between
different relations. The relation topic construction process
extracts the topics from the finest level of the input data while
at the same time modifying the relationship between relations
to focus more on low-frequency indirect co-occurrences
(between relations) for the next level.

The main motivation for the creation of relation topics
is that we can project any relation instance candidate
(including the candidates from unseen relations) onto the
relation topic space. This step results in a set of relation topic
features that reflects the relationship between the given
candidate and the known relations. Such topic features are
used in an SVM classifier (through the kernel function,
see below) to detect relations from the relation instance
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candidates or compute the similarity score between the
question and the passage.

Relation detection with relation topics

In this subsection, we describe our technique to do relation
detection. Our model (or classifier) that does relation
detection is trained using SVMs. SVM classifiers use a kernel
function to model similarity among the instances. Our kernel
function combines the relation topic features with three
other existing kernels that match arguments, dependency
paths, and the common words shared by two instances (see
Figure 3). Details about this kernel are presented in [23].

Training

In training data from DBpedia and Wikipedia, the arguments
of each relation instance are already given and the order is
always from subject to object. We train one SVM model
with our kernel for each relation. The negative training set
for each relation is created by sampling the instances from
the other relations.

Testing
Given a test instance, the testing procedure has the following
four steps.

1. Detect argument pairs—For Jeopardy! questions,
the focus and each named entity in the question make an
argument pair. For an arbitrary sentence, we use ESG to
extract all predicate nodes, and any predicate node pair
makes a pair of relation arguments.

2. Detect argument order—In some situations, the
dependency path tells us which argument is subject and
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which is object. Otherwise, we try both combinations.

3. Filtering—To mitigate the noise introduced by false
positives in our training data extraction heuristics and to
provide a way to balance the recall and precision, we have
also developed a keyword filter and an argument type
filter to filter out noisy relation instances.

On a relation-per-relation basis, we extract the most
popular verbs, nouns, and prepositions (these are deemed
more important than the other words to detect relations)
from the dependency path of each training positive
instance. For any given relation, we add the words that
occur in at least 10% of positive instances or at least
three times in its positive training data set to a list to create
a keyword filter. If a given test instance does not have
any key word in this list, it will be filtered out. We also
designed an argument type filter exploiting the YAGO
type hierarchy, which extracts the most common parent
type in YAGO for each argument in each relation. The filter
then rejects test instances that have at least one argument
not under the corresponding common parent type.

We drop the test instance if it does not pass either the
keyword filter or the argument type filter (this step is
optional).

4. Apph—Apply all our relation detectors to the test
instance to extract semantic relations.

Unstructured passage scoring with relation topics
When the question and a passage share very few
keywords, any similarity between them computed

using term-matching-based approaches would be low.

In such situations, if a relation detector can find shared
relations between the question and the passage, this can
lead to a higher semantic similarity score.

One way to integrate this idea in the DeepQA framework
is to use our relation detectors to find all relations expressed
in both the question and each given passage. The number
of relations they share is then used to score the passage.
This approach, however, does not work well in practice
for two reasons. First, the open-domain setting of DeepQA
requires that a large set of relation types be covered.

In our case, we have more than 7,000 relation models

that need to be applied to each given passage. Considering
the huge amount of passages to be processed, this

approach is not realistic in real-world applications. Second,
many semantic relations are not covered in DBpedia. If

a question and a passage share some significant relations
that are not in DBpedia, the passage will not be appropriately
scored. To address these challenges, we developed a novel
algorithm for passage scoring in DeepQA by integrating
relation topics extracted from Wikipedia and DBpedia data.

The information extracted from relation topics is useful
for unstructured passage scoring. For example, if argument
types fown, city, state, etc. often occur in the same relations
(such as birthPlace and deathPlace), the topic
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extraction approach will automatically learn a topic from
that. When we align argument types fown and city in the
relation topic space, we will get a high similarity score
since the projection results of them on the topic space are
close to each other. Words with similar meanings will be
also treated in a similar way. In the relation topic space,
instances from related relations will be grouped together.
Passages that only have relations remotely matching the
relations expressed in the question will be still appropriately
scored since the indirect relationship between relations is
also captured in the topic space. Using relation topics may
significantly help score passages, and it potentially expands
the information brought in by each passage from making
use of the knowledge extracted from the existing relation
repository.

In DeepQA, the passage score represents how well a
given passage matches the question and is used to rank
candidate answers derived from the passages. For the
sake of simplicity, we assume that the question has one
focus and the passage has one candidate answer. In the
following question—passage example, the question focus
is state and the candidate is state of Quintana Roo.

Question: It’s Mexico’s northernmost state, but part of
its name means “low”.

Passage: Cabo Catoche or Cape Catoche, in the
Mexican state of Quintana Roo, is the northernmost
point on the Yucatan Peninsula. It is about 53 km
(33 miles) north of the city of Cancun.

To align the question and the passage, we first find pairs
of matching terms, which are the terms that resemble each
other semantically. In this example, we have two pairs of
matching terms [Mexico’s, Mexican, via stem: Mexico] and
[northernmost, northernmost]. We assume that the focus and
one matching term in the question make a semantic relation.
We then assume that the candidate variant and the
corresponding matching term in the passage also make a
relation. We project these two relation instances onto the
relation topic space. The cosine similarity of the projection
results is used to score the passage for the selected matching
terms. In this example, we have two matching pairs. The sum
of two matching scores is used as the final passage score.
Since the matching terms other than the focus—candidate
pair are always quite similar to each other ([northernmost,
northernmost], in the example above), we do not take
them into consideration when we compute cosine similarity.
The passage score is used as a feature and is used for
candidate answer ranking [24].

Integrating in DeepQA

The relation detection component is used in several places
in the DeepQA pipeline.
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Table 2 Component-level evaluation of different approaches using ACE 2004 data.

Approach Recall Precision Iy score
Convolution tree kernel 56.7% 72.5% 0.636
Composite kernel (linear) 67.00% 73.5% 0.701
Syntactic kernel 70.5% 69.23% 0.6986
Nguyen et al. (2009) [30] 67.00% 76.60% 0.7150
Our kernel with topic features 77.88% 69.15% 0.7324

In the question analysis step [12], we attempt to identify
relations between the focus and each named entity in the
question. If a relation is detected, we invoke the
Answer Lookup component [2] to search against structured
knowledge base (such as DBpedia) for all instances
of the relation that contain the given named entity as one
argument. The other argument of the relation is then treated
as a potential candidate answer.

Relation extraction, i.e., both on the question side and
on the content side, is used in supporting passage scoring,
in particular, by components such as Logical Form
Answer Candidate Scorer (LFACS) [3] and by the
unstructured passage-scoring component described in the
previous section.

Separately, semantic relations produced by the rule-based
approach are also used by some other components in
DeepQA. One use is in keyword search, where keywords
connected to the focus by a semantic relation are weighed up
in the search query [2]. Geospatial and temporal semantic
relations are used to query structured knowledge bases for
structured inference-based constraint satisfaction and scoring
of candidate answers [25]. Additionally, the results of
relations extraction over a large body of text are aggregated
in the PRISMATIC knowledge base [26], which is itself used
by a range of search and answer-scoring components.
Semantic relations have been also enhanced to facilitate
processes of semantic frame detection and frame slot
instantiation [25].

Experiments
We evaluate our approaches at both the component and
system levels.

Component-level evaluation

At the component level, we performed six experiments to
measure the relation extraction performance on Wikipedia
data, ACE data, and Jeopardy! questions.

a) Wikipedia data
Experiment 1—In the first experiment, we evaluate the
statistical relation detection approach trained on Wikipedia
data (no filter) using a Wikipedia data set held out for
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testing. We achieve an 81.18% F| score in this experiment.
Details about this experimental setup are in [23].

b) ACE data

¢)

Experiment 2—The ACE 2004 corpus is the most
popularly used benchmark data set for relation extraction.
In the second experiment, we use ACE data to compare
our approach against the state-of-the-art approaches

on relation extraction, including convolution tree kernel
[27], syntactic kernel [28], composite kernel (linear) [29],
and the best kernel in [30]. The results are summarized
in Table 2. Our statistical approach has the best
performance, achieving a 73.24% F) score. Details about
the experimental setup are in [23]. The rule-based
approach is not tested in this experiment since it is

not developed to process ACE relations.

Jeopardy! data

As noted earlier, our statistical relation detectors are
trained on Wikipedia data. We now run four additional
experiments (Experiments 3 through 6, listed below) to test
the relation detection on 3,508 Jeopardy! questions.

We use recall and precision to measure the performance.
Measuring recall is challenging since no ground truth
information about what relations are expressed in each
question is given.

To create a data set to measure recall, we took the
following approach. From the question text of each
question, we retrieve all its named entities. Each
named entity and the answer (used to replace the focus)
to the question potentially participate in some semantic
relations. We then check whether the answer is in the
infobox of the Wikipedia page corresponding to each
named entity in the question. If the answer is there, then
we have a relation instance candidate. All such candidates
are manually verified to remove the false positives.
Using this approach, we collected 370 DBpedia relation
instances. Precision is measured by manually checking
whether the extracted relations are true. In this task, only
the DBpedia relations that occur in the recall set are
considered for precision computation. The results reported
in this data set are summarized in Table 3.
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Table 3 Component-level evaluation using Jeopardy! data.

No. relation detectors Recall Precision F| score
Rule-based approach” ~30 relations 41.40% 83.25% 0.5530°
Statistical approach (without filters) >7,000 relations 54.28% 25% (estimated) 0.3423
Statistical approach (with filters) >7,000 relations 45.71% 59.44% 0.5168
Filters only >7,000 relations 83.00% — —

“The rule-based approach is evaluated on nine relations.

Experiment 3—In the third experiment, we evaluate

our statistical approach trained on Wikipedia data

(no filter) using Jeopardy! data. The recall for this test

is 54.28%. The exact precision is not known since more
than 7,000 relation instances are extracted and it is
unrealistically time consuming to manually annotate all of
them. We randomly chose 5% of the relation instances
for annotation and find that the precision is around 25%
for the sampled data.

Experiment 4—In the fourth experiment, we evaluate the
statistical approach with both the keyword filter and the
type filter active. The noise reduction due to filtering
now makes it possible to manually annotate the results.
The recall for this setting is 45.71%, precision is 59.44%,
and the F score is 51.68%. This shows that using

filters can significantly improve precision without
compromising recall.

Experiment 5—In order to assess the effects of filtering
even further, we run a test to see how many positive
instances are blocked by the filters; the result shows that
83% of positive instances passed the filters. The most
popular failure case is due to arguments specific to
Jeopardy! not being recognized by our filters. For example,
the argument type filter does not know that “a hit”

may represent a movie since the Wikipedia data does

not have such examples.

Experiment 6—1In the sixth experiment, we evaluate

our rule-based approach using Jeopardy! data.

Note that the rule-based approach is not statistical

(and, hence, no training is required) since it works by
applying pattern-based rules to text fragments.

The relations identified by the rule-based approach do not
necessarily have corresponding DBpedia relations.

The recall and precision numbers in this experiment

are reported only on nine relations that can be easily
mapped to DBpedia relations. These nine relations are
actorIn, authorOf, bornWhen, bornWhere,
composerOf, creatorOf, directorOf,
nationalityOf, and performerOf. The recall for
these nine relations is 41.40%, precision is 83.25%, and
the F; score is 55.30%. In comparison, the statistical
approach with filters on the same nine relations achieved a
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recall of 41.27%, a precision value of 57.79%, and an F)
score of 48.15%.

d) Analysis
The experiments on ACE and Wikipedia data show
that our statistical relation detection approach has
state-of-the-art performance at the component level.
Since we do not have sufficient training data from
Jeopardy!, the statistical relation detectors we use for
Jeopardy! are also trained on Wikipedia.

Compared with the F; score from the Wikipedia test,
there is a significant performance drop for the Jeopardy! task.
This is due to several issues that cause a mismatch between
the training data obtained from Wikipedia and the test
data of Jeopardy!. First, the argument types in the Wikipedia
data are given. In Jeopardy!, we have to use the EDM and
PDM algorithms [9] to obtain argument types, and the
accuracy of these two modules presently is approximately
70%. Second, most sentences in Wikipedia are instances
of straightforward prose, whereas many Jeopardy! questions
are vague and/or tricky or otherwise unusual. Third,
some terms used in Jeopardy! are not used very often in
Wikipedia, e.g., the term “hit” (as a “movie”) discussed
above. We find that using filters improves the precision
and makes the relation detection models usable for
Jeopardy! tasks.

Our rule-based approach is tested only on Jeopardy! data.
Compared with the statistical approach, the rule-based
approach has slightly worse recall but, as expected, much
higher precision.

System-level evaluation

At the system level, we evaluate the impact of relation
extraction on end-to-end question-answering performance
through candidate answer generation and unstructured
passage scoring. We apply our approaches in the context
of two different configurations of the DeepQA system.

The full configuration includes all components of DeepQA.
The basic configuration includes all of the standard question
analysis components, search, candidate generation,
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Table 4 System-level impact in end—end experiments
of relation detection-based candidate answer generation.

Table 5 System-level impact in end—end experiments
of relation detection-based unstructured passage scoring.

Configuration Accuracy improvement
54.36%
54.79% (+0.43%)

54.59% (+0.23%)

Basic configuration
Basic + rule-based

Basic + rule-based +
statistical relation detection

69.81%
70.35% (+0.54%)

Full configuration

Full + rule-based + statistical
relation Detection

Configuration Accuracy improvement
Basic configuration 54.36%
Basic + rule-based 54.79% (+0.43%)
Basic + rule-based + 56.79% (+2.43%)
statistical passage scoring
Full configuration 69.81%
Full + rule-based + 70.41% (+0.6%)

statistical passage scoring

a simplified configuration for merging and ranking answers,
and one answer scorer that checks answer types using a
named entity detector [9]. All experiments are conducted on
a previously unseen set of 3,508 Jeopardy! questions.
Performances are reported on the accuracy improvement
from our relation detection approaches in end-to-end
experiments.

Candidate answer generation using relation extraction

In candidate answer generation, we extract relations between
the focus and each named entity in the question. If a relation
is detected, we invoke the Answer Lookup component to
search against structured knowledge bases for all instances of
the relation that contain the given named entity as one
argument. The other argument of the relation is then treated
as a potential candidate answer. We measure the impact

of this component to the system. The results are summarized
in Table 4. Under the basic configuration, statistical relation
detection, together with the rule-based approach, achieves
0.2% accuracy improvement over the baseline system.
Under the full configuration, the improvement is about
0.54%. Neither difference is statistically significant.

Unstructured passage scoring using relation extraction

In unstructured passage scoring, we use the passage score
computed in the relation topic space as a new feature and
apply it to candidate answer ranking. The impact of this
score is reported in Table 5. Under the basic configuration,
passage scoring using both relation topics and manual rules
achieves 2.43% accuracy improvement over the baseline
system. Statistical relation extraction alone contributed

a 2% improvement for this case. Under the full system
configuration, the improvement is approximately 0.6%.
Both differences are statistically significant using McNemar’s
test with Yates Correction for continuity [31].

Analysis of results
The overall system-level impact of relation detection on
candidate answer generation is not significant. There are
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several reasons for this. First, relation detectors only fire on
13.6% of the questions, and 82% of the questions in this
subset have been already correctly answered without using
relation detection capabilities. This means that our headroom
for improvement is only approximately 90 questions.
Although the relation detection module helps answer

16 more questions in this subset correctly, the overall impact
is still not significant. Second, DBpedia has incomplete
coverage. For example, some U.S. presidents are not labeled
as U.S. citizens in DBpedia. Issues such as this lead to
misleading information being supplied to the ranking model,
which is consequently unable to generate some candidate
answers even when the relation detector returns the

correct results. Third, the overall performance of our relation
detectors on Jeopardy! data is not satisfying because of

the inherent mismatch between the Wikipedia-derived
training data and test data. This is also confirmed in the
component-level experiments.

On the other hand, the overall system-level impact of
relation detection on unstructured passage scoring is
statistically significant under both the basic and full
configurations. In addition, we do not need to search
against the knowledge base at run time since the passage
score is computed in the relation topic space, which has
already integrated the information extracted from the
knowledge base. This significantly reduces the time and cost
needed to detect relations in the DeepQA framework.

Conclusion

This paper has presented two approaches for relation
extraction and unstructured passage scoring in DeepQA
using handcrafted patterns and statistically derived relation
topic models, respectively. The effectiveness of our
approaches is demonstrated using multiple data sets at both
the component and system levels.

At the component level, our relation detector
outperforms the state-of-the-art approaches on ACE data,
which is the most popularly used relation detection test
data set.
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At the system level, the candidate generator component
based on relation detection does not have a significant impact
on the system for three reasons: 1) Most questions that our
relation detectors fire on have been already correctly
answered, leaving us with little headroom to improve the
system performance; 2) DBpedia has poor coverage on some
relations that are of relevance; and 3) the training data from
Wikipedia and the test data from Jeopardy! are quite
different. More advanced domain adaptation approaches are
still needed to make the performance on Jeopardy! data
match the performance on Wikipedia data.

At the system level, our unstructured passage-scoring
component based on relation detection has a statistically
significant impact on the system, demonstrating that the
information brought in by semantic relations is important
to open-domain QA systems.

Comparing the two approaches in our framework, the
rule-based approach has high precision and is used in
many other components in the DeepQA framework. This
needs to be offset against the human effort, domain
knowledge, and experience needed to create rules for new
relations. Statistical approaches learn how to extract semantic
relations from the training data and can be applied to
detect a large number of relations. It is interesting to note
that, although the precision of the statistical relation
detectors is not as high as that of the rule-based approach,
their overall impact on the system through passage scoring
is statistically significant because of broad coverage of
knowledge. In the future, we will explore more advanced
techniques to combine the two approaches in the DeepQA
framework.
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