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Although the majority of evidence analysis in DeepQA is focused on
unstructured information (e.g., natural-language documents), several
components in the DeepQA system use structured data (e.g.,
databases, knowledge bases, and ontologies) to generate potential
candidate answers or find additional evidence. Structured data
analytics are a natural complement to unstructured methods in that
they typically cover a narrower range of questions but are more
precise within that range. Moreover, structured data that has formal
semantics is amenable to logical reasoning techniques that can be
used to provide implicit evidence. The DeepQA system does not
contain a single monolithic structured data module; instead, it allows
for different components to use and integrate structured and
semistructured data, with varying degrees of expressivity and formal
specificity. This paper is a survey of DeepQA components that use
structured data. Areas in which evidence from structured sources
has the most impact include typing of answers, application of
geospatial and temporal constraints, and the use of formally encoded
a priori knowledge of commonly appearing entity types such as
countries and U.S. presidents. We present details of appropriate
components and demonstrate their end-to-end impact on the
IBM Watsoni system.

Introduction
A misconception about IBM Watson* and the DeepQA
technology is that it takes an English question and
Blooks up the answer[ in a structured knowledge resource
or database. Although this is simply not the case, this
misconception can be attributed to the fact that in the early
days of automated question answering (QA), the systems
were conceived as natural-language interfaces to databases
[1, 2]. These early QA systems worked by translating the
natural-language question into a formal structured query
and issuing it against a precompiled database of knowledge
in order to arrive at the answer.
There are two main downsides with this traditional

approach to QA. First, it requires language to be precisely
and completely translated into a formal representation.
Second, it requires the underlying structured data and schema
to be encoded and populated (either semi-automatically or
manually) in a form suitable to answering questions, which
can be a complex and cumbersome process. These two
factors make the approach narrow in scope and extremely

brittle. The systems are often unable to interpret the question
in a way that matches their predefined vocabulary and
schema. Moreover, such an approach does not work for
open-domain QA and particularly for the Jeopardy!**
problem, where questions are expressed using a wide variety
of linguistic expressions and span a broad range of topics.
The design philosophy of DeepQA [3] breaks from this

traditional view without completely discarding it; that is,
although Watson can make use of formal structured
knowledge, it does not completely rely on it, and Watson
employs many retrieval and scoring methods based on
unstructured and structured knowledge to find and evaluate
candidate answers.
Many of these methods do not rely on any internal

representation of the natural language at all but rather employ
algorithms that use unstructured sources and compare
natural-language statements to each other on the basis of
properties of the statements themselves [4]. Such methods
tend to provide broad coverage; they are capable of
producing candidate answers and evidence scores for many
different questions, but they are not always precise. Methods
that use formal structured knowledge typically cover a
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narrower range of questions but are more precise within
that range. As a result, they are a natural complement
to unstructured methods.
The critical factor in exploiting formally represented

knowledge is the ability to translate from natural language
into a formal representation. The natural-language processing
(NLP) community has struggled with this problem since
its inception, but, within the past 20 years, less exacting
approaches that do part of this job have emerged, e.g., named
entity recognition and relation extraction. These technologies
extract pieces of a formal representation, such as a limited
set of types of entities and a few types of relations expressed
between them. In addition, and importantly, they do these
tasks with some understood notion of error, such as precision
and recall.
DeepQA’s use of formally represented knowledge is

similar in direction. For the most part, Watson does not get
a complete meaning representation of a question and then
try to answer it; rather, Watson finds pieces of knowledge
from questions and tries to exploit what sources it has as
evidence for answers. Importantly, it does this in the presence
of precision and recall errors that normally confound
representation and reasoning systems.
The components that rely on structured data work in

parallel with DeepQA’s other less structured scoring
mechanisms [4]. DeepQA answer ranking [5] treats both
types of results as machine learning features that are used
to rank candidate answers and determine the confidence of
ranked answers.
Note that there is no single monolithic structured data

module in the DeepQA system. Instead, the current design of
DeepQA allows for different components to use and integrate
structured and semistructured data with varying degrees
of expressivity and formal specificity. Components that need
access to background resource description framework (RDF)
stores such as DBpedia [6] and Freebase [7] use a shared
query application programming interface (API). However,
in many cases, components have their own internal
representations for storing and reasoning over structured
data. This paper is a survey of the main DeepQA components
that benefit from using structured data and inference.
The remainder of this paper is organized as follows: In

the next section, we motivate the need for structured data
analytics in DeepQA. The subsequent section describes
Watson’s structured data resources and the manner in which
they were aggregated or built. Then, we describe specific
components in Watson that use structured data and inference
and evaluate their impact on the Jeopardy! task. Finally,
we discuss related work and ideas for future work.

Motivation
One of the main uses of structured data is to provide evidence
in support of estimating the confidence in a candidate
answer. To illustrate this point, consider the following

question that expresses several constraints that the answer
must satisfy:

THE HOLE TRUTH (1200): Asian location where a
notoriously horrible event took place on the night of
June 20, 1756. (Answer: BBlack Hole of Calcutta[)

The correct answer must be a location, be in Asia, and be
associated with an event that happened there on June 20,
1756. Evidence for any of these constraints might be found
in text; however, it is very unlikely that the location would
be explicitly expressed as being in AsiaVmore likely
India or Calcutta. Even when a constraint is explicit in
text, using formal knowledge to evaluate constraints can
provide additional evidence for or against various candidate
answers. Temporal and/or spatial constraints such as these
are common in questions, and a significant proportion of
those are covered by relationships such as containment or
relative positioning among geospatial entities (near, east,
west, etc.). Explicit geospatial databases are prevalent on the
web, and temporal associations can be extracted with varying
degrees of precision from background sources. It was clear
that exploiting this wealth of structured data to help with
these aspects of evaluating evidence would be beneficial. For
example, we want to be able to use structured sources to tell
us that the BBlack Hole of Calcutta[ is an Asian location.
Another important benefit of structured data evidence is

that by virtue of its well-defined semantics, it is particularly
useful for explanatory purposes as well. For example,
semantic evidence related to time and space information is
particularly helpful in understanding why particular answers
are compatible or incompatible with certain aspects of the
question.

Structured data stores used in Watson
In this section, we describe the sources of structured
knowledge used in DeepQA, which broadly fall
into four categories as follows:

1. Large online Boff-the-shelf[ databases of relations
between known entities (such as movie databases) and
type labels for known entities (such as Wikipedia**
categories).

2. Large collections of automatically extracted data
from unstructured sources that target specific kinds
of knowledge (such as temporal associations).

3. A small amount of handcrafted additions to off-the-shelf
sources to account for recognized differences between
the task domain (e.g., Jeopardy!) and the source.

4. A small amount of handcrafted formal knowledge
targeting the most common question and answer types.

The online off-the-shelf databases were available in RDF
and were stored in a Sesame RDF repository [8], whereas for
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the other three categories, the extracted data was stored in
custom data structures that were designed and optimized to
work with the corresponding components that used them.

Off-the-shelf knowledge resources
Contrary to the approach taken by, e.g., CYC** [9] and,
more recently, WolframAlpha** [10], we committed early in
the project not to curate large databases or common-sense
axioms for answering questions but to exploit what was
available on the Web. One reason for this decision was that
we wanted to build reusable and adaptable QA technology,
not a special-purpose Jeopardy! game-playing system.
We also wanted some quantitative understanding of whether
the wealth of data being brought online in the Semantic
Web had value for QA applications.
Given our commitment to Wikipedia for candidate answer

generation [11], it was clear that DBpedia [6] would be a
natural source of structured information, because it is created
from Wikipedia information boxes (i.e., infoboxes), and
each Wikipedia article is an entity in DBpedia. We also
extracted a small portion of the Freebase [7] knowledge base
targeting spatial information, in particular, containment
and border relations between geo-entities, since Freebase
provides higher precision and coverage for these relations
than DBpedia.
The DBpedia knowledge base contains relational

information found in the infoboxes of Wikipedia pages.
A one-to-one correspondence between all Wikipedia pages
and DBpedia entries maps the two resource names (or URIs).
The mapping between the two resources links unstructured
and structured data (information from the structured domain
provides a context for interpreting unstructured text, and
vice versa), which we use for NLP tasks such as Entity
Disambiguation and Matching (EDM) [12] and relation
detection [13].
DBpedia also contains temporal and geospatial

information, such as birth and death dates of people,
durations of major events, and latitude/longitude for
geo-entities, used by the temporal and geospatial scoring
components in DeepQA. Because DBpedia is scraped from
infoboxes, there are no controlled schema or data formats
for the values listed there; hence, for example, dates are
not in one standard format: The date BJanuary 23, 1950[ is
variously represented as strings such as B23rd Jan 1950[,
B01/23/1950[, and B23-01-1950[. Consequently, we ran a
temporal expression recognizer, broadly compliant with
TimeML’s TIMEX3 guidelines [14], converting temporal
expression values to a standardized notation. Similarly,
for spatial relations, we normalized variations in expressing
latitude/longitude coordinate values by applying a
regular-expression pattern recognizer.
Additionally, DBpedia has type assertions for many

instance objects. The types are assigned from a collection
of ontologies, including YAGO (Yet Another Great

Ontology) [15], a large taxonomy of more than 100,000 types
with mappings to WordNet** [16] synsets. Every YAGO
type corresponding to a WordNet concept has the associated
nine-digit WordNet sense identifier appended to its name/ID.
Thus, the YAGO type BPlant100017222[ links to the
WordNet concept plant (living organism), whereas the
type BPlant103956922[ corresponds to the concept of an
industrial plant or factory. YAGO types are arranged in a
hierarchy, and DBpedia instances are often assigned several
low-level types corresponding to Wikipedia categories
(e.g., BCompaniesEstablishedIn1896[). For these, navigation
up the YAGO type tree leads to more general and normalized
(via sense encoding) YAGO WordNet concepts.
These design points of DBpedia and YAGO enable us

to obtain precise type information for many candidate
answers across many different possible types while including
many linguistic variations (i.e., synonyms) for expressing
them. This type information is exploited by the YAGO
type coercion (TyCor) component, described later.

Automatically extracting structured data
Some DeepQA answer-scoring components use structured
knowledge that is automatically mined from the Web. For
example, one temporal answer scorer determines whether
a candidate answer is Btemporally compatible[ with dates
in the question. This scorer consults a knowledge base
of (entity, date, and count) triples, where Bcount[ is the
number of entity–date co-occurrence pairs extracted from
Wikipedia. The co-occurrence extractions are done in two
ways: i) document-level, looking at Wikipedia articles
where the title matches the entity and the article contains
the date, and ii) sentence-level, looking for sentences across
the entire Wikipedia corpus that contain the hyperlinked
entity reference and the corresponding date.
Other examples of automatically extracted Web

knowledge used in the DeepQA system include PRISMATIC
[17] and some of the TyCor resources [12] (e.g., type
information extracted from Wikipedia Lists).

Manually extending off-the-shelf sources
Certain DeepQA components rely on custom extensions
of existing knowledge. For example, the YAGO ontology
does not represent mutual exclusivity (disjointness)
between types; e.g., there are no instances belonging to both
Country and Person. Type disjointness is useful for QA,
to rule out candidate answers whose types are incompatible
with the question lexical answer type (LAT) (see [12] for
anti-TyCor).
Given the size of the YAGO ontology (9100,000 types),

manually asserting such relations between all applicable type
pairs is infeasible. Instead, we only specify disjointness
between prominent top-level types of the YAGO hierarchy
and use a logical reasoning mechanism to propagate the
disjointness to lower subclasses. For example, it follows
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that if Person and GeoPoliticalEntity are disjoint, then
every subclass of Person is disjoint with every subclass
of GeoPoliticalEntity (e.g., Musician is disjoint with
Country). Our additions to the YAGO type system
comprise approximately 200 hand-curated explicit
disjoint relations.

Handcrafting domain-specific knowledge
There are a few common subjects, such as U.S. Presidents,
works of Shakespeare, U.S. States, and Countries, as well
as a few categories of puzzle questions, for which it does
make practical sense to build special-purpose templates,
or frames, for the question types and to populate the frames
with appropriate instance data.
Frames are coherent groups of related concepts (based

on the classical knowledge representation [KR] notion [18])
and can be defined in isolation or with inter-frame relations.
These are particularly helpful for questions that are better
suited to an exhaustive generate-and-test solution using
structured knowledge than to a search through unstructured
sources. For example,

BRAIN MAUL!: The 4 U.S. states that begin with
the word Bnew.[ (Answer: BNew York, New Jersey,
New Hampshire, New Mexico[)
PRESIDENTIAL ELECTIONS: The only 2
Democratic Presidents defeated for reelection since
the Civil War. (Answer: BCleveland, Carter[)

One could search for the keywords in these questions
and hope to find passages that explicitly answer them
(e.g., BNew Mexico is a U.S. state that begins with the
word Fnew_.[). This could potentially provide independent
support for four different answers, and DeepQA could
combine these to form a single final answer during
answer merging and ranking [5]. However, some of these
characteristics are unlikely to be asserted in text but are easy
to verify given an answer. Lexical constraints (e.g., begins
with Bnew[) can be checked by inspecting a string, whereas

semantic constraints (e.g., since the Civil War) can be
checked using structured knowledge.
A special consumer of precise structured domain

knowledge is the DeepQA semantic frame component.
Figure 1 highlights portions of the definitions for two sample
and interrelated frames in DeepQA: Book and Movie.
Whereas frames are just graphs, the nodes and arcs represent
the expectation that instance-based graphs conforming to
these frames will have a certain structure. In other words,
we expect books to have an author, publication date, and
topic. Often, clues will specify some parts of the frame
explicitly, enough to select some instance of the frame, and
the answer will be one of the parts not specified in the
question, e.g., BBram Stoker’s famous book on vampires was
published in this year[. Frame definitions are hand-built
from analysis of the domain and the most common types of
things that appear in questions, and they are particularly
helpful for questions combining complex constraints over
interrelated frames that frequently occur in Final Jeopardy!,
e.g., BA 1992 movie starring Anthony Hopkins was based
on an 1897 book by this author[.
On the basis of our analysis of many Jeopardy! clues, and

particularly focusing on Final Jeopardy!, we built frames
for U.S. presidents and vice presidents, U.S. states and their
capitals, countries and their capitals, books, movies, and
awards (specifically Nobel Prizes and some kinds of Oscars
and Pulitzer Prizes). We extracted topic-relevant data from
a variety of structured and semistructured sourcesVe.g.,
Wikipedia lists and tablesVmanually vetting the results.
We also exploited the structured knowledge in DBpedia and
Freebase by mapping to and from our hand-crafted frames.

Using structured data in DeepQA
In this section, we describe several components in the
DeepQA system that use structured data. The first, and
perhaps most error-prone, step in using structured data is
matching strings that come from the question or candidate
answers to represented entities in the source. There are many
entities with the same name and many names for the same

Figure 1

Book and Movie interrelated frames in DeepQA.
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entity. This problem, which we call Entity Disambiguation
and Matching, pervades all the uses of structured data
described below and is described in more detail in [12]. The
remainder of this paper assumes that the string-to-entity
matching has been done.

Temporal and geospatial reasoning
The DeepQA system deals with many questions that
express temporal or geospatial relations involving the correct
answer. The system attempts to gather evidence for these
relations in order to support or refute potential answer
candidates and does so by primarily using structured sources.
The evidence is then expressed as a set of Banswer scores[
(features) weighed by the DeepQA system in ranking
candidates.
Each answer scorer operates in two phases. During

the question analysis phase [19], the system identifies
information in the question that the answer scorers can use
to gather evidence for the candidates and may even decide
whether a particular scorer should apply for the given
question. In the case of temporal scoring, question analysis
would detect temporal expressions in the question and
determine whether the correct answer is related to that
temporal expression. On the basis of this information, during
evidence gathering [4], an answer scorer may run in the
pipeline to seek specific types of evidence for ranking the
candidate answers. Our temporal and geospatial answer
scorers, for instance, search structured resources to determine
whether candidate answers are temporally compatible with
the question or have the same geospatial relation as that
expressed in the question. The remainder of this section
presents details of these two types of answer scorers in the
DeepQA system.

Detecting and scoring temporal relations
The main temporal relation we detect is a BTLink[ [14],
which specifies the end points of a generic temporal
relationshipVi.e., an entity and a time/date expression that
are connected via a dependency path in the parse of the
question. Unless specialized to a specific relation such as
birthDate or deathDate, BTLinks[ are untyped and,
thus, are not directly usable for table-based validation.
However, the presence of a TLink involving the focus in
the question is indicative of a temporal relationship that
needs to be considered on all candidates. DeepQA, therefore,
includes answer scorers that measure the degree to which
candidate answers are Btemporally compatible[ with the
argument of the TLink.
One way to measure temporal compatibility of an answer

candidate is to determine whether the time expression in
the clue is chronologically before the entity came into
existence. The hypothesis here is that an entity is unlikely
to be associated with dates before it ever came into existence
and, thus, could be down-weighted as an answer to a

question discussing such dates. The date compatibility scorer
uses the temporal knowledge base containing birthdates
of entities and posts a Boolean Bbefore birth[ feature
indicating whether the time expression in the question is
chronologically before the entity came about. We did also
look into an Bafter death[ feature for time expressions in the
question occurring chronologically after the Bdeath[ of the
entity. However, we found, in many cases, that entities
do have events associated with them even after their death
(such as posthumous awards, celebrations of their birth, etc.),
and thus, a feature based on dates after the entity’s Bdeath[
does not have any impact on the Jeopardy! task.
Another option for scoring the temporal compatibility

of answer candidates to the question is by matching the
time expression in the question to a date of a significant
or important event associated with the entity, using a
set of Bimportant[ dates. For this purpose, our temporal
knowledge base stores, for each entity, the frequency counts
of time expressions appearing in the same sentence as the
entity on the entity’s Wikipedia page.
Our temporal match scorer posts two temporal match

scores for the DeepQA model to use in ranking the
candidates: an absolute temporal score and a temporal
ratio score. The absolute temporal score is the frequency of
the matched date for an entity, whereas the temporal ratio
score is the ratio of the absolute temporal score of the entity
to the total frequency of all dates for that entity.

Detecting and scoring spatial relations
The spatial relations that we detect between two geo-entities
include relative direction (BThis state which lies to the
NE of Nebraska[), borders (BThis country that shares its
boundary with Argentina. . .[), containment (BKosovo is
now an autonomous province within this Balkan republic[),
and the subjective notions of Bnear[ or Bfar[ (BThis port
close to Norfolk[). These relations were chosen because
of their prominence in Jeopardy! questions and the good
coverage they get in our structured sources.
Having detected spatial relations in the question, we

map the entity argument strings to resources in structured
knowledge bases (DBpedia and Freebase) using the EDM
algorithm [12] and use a manually compiled list of DBpedia
relations to obtain corresponding geospatial information.
For example, latitude information is given by any one of
the following relations in DBpedia: georss.org/georss/point,
DBpedia.org/property/latitude, or wgs84_pos#lat. If the
entity does not have any latitude or longitude information
associated with it but does have a geographical
location specified (via a relation such as locatedIn,
headquarters, etc.), we obtain coordinates for the
location and use it as being representative for the entity.
For example, the entity IBM does not have any coordinates
associated with it; however, IBM has a headquartered
relation with the value BArmonk, NY[, and thus, we infer
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geo-coordinates for IBM as those of BArmonk, NY[, which
is useful in cases where the question asks for, e.g., a U.S.
company.
Geo-coordinate information is used to compute the relative

direction of two geo-entities and for computing spatial
distance (for Bnear[ or Bfar[ relations). Obviously,
coordinate information alone is not sufficient to compute
borders or containment relations, which are explicitly
checked in Freebase data. The spatial answer scorer adds a
binary feature in the model indicating whether the spatial
constraints in the clue are satisfied by the candidate answer.
When trying to satisfy these constraints, the scorer takes
advantage of the symmetry of the borders relation and
transitivity of the containment relation.1

A particular challenge in geospatial analytics is to interpret
subjective notions of proximity such as being near or far,
which depend on the magnitude of size of entities and are
thus difficult to estimate. Our approach is to use the spatial
distance between the candidate answer and the geo-entities
in the clue and add one of two spatial-distance features
(spatial-distance-near and spatial-distance-far) based on
whether the question specifies the answer to be near or far
from geo-entities mentioned. We then take advantage of
standardized features in the model [5], which normalize a
feature score relative to the mean and standard deviation
of the feature across all candidate answers for the given
question. As a result, the standardized spatial-distance
features measure the relative difference in spatial distance
between candidate answers from geo-entities in the clue, and
the machine learning uses this information during training
to learn an appropriate weight for the features, based on the
proximity desiredVe.g., the spatial-distance-near feature
gets a negative weight in the model, as the further away
the candidate answer is from the geo-entities in the clue
(compared with the other candidates), the less likely it
is to be correct.
We also employ the spatial-distance-near feature in cases

where an explicit Bnear[ relation is not detected. Whenever a
question makes a reference to a geospatial entity and the
answer is (according to its LAT) a geospatial entity as well,
an implied proximity relationship is hypothesized. For
example, given the question BRiver that connects Lake
Powell in Utah with the Gulf of California[, the answer is
Bnear[ both Utah and California.

Evaluating the impact of temporal and
spatial analysis
We evaluated the impact of the temporal and spatial answer
scorers in Watson by running on a blind Jeopardy! question
set of 3,508 questions. The baseline configuration used

was the DeepQA system with only one answer-scoring
componentVthe HUTT Type Coercion answer scorer [12].
Results of adding the components are shown in Tables 1
and 2, respectively.
Both components fired on a relatively small set of

questions; however, they brought about an improvement of
approximately 1% to 2% in QA accuracy and Precision@70
(i.e., accuracy for the top 70% of the questions that the
system is most confident about) on the questions fired.
The end-to-end impact is not statistically significant (hence,
not reported in the table); although, as noted earlier, the
presence of temporal and spatial evidence is very useful
for explanation purposes.
We do not provide component-level evaluation of

temporal and spatial relation detection because we have no
annotated gold standard. In any case, our temporal analysis
is shallow, in the sense that we are detecting TLinks but
attempt no deeper semantic labeling, e.g., birthDate,
deathDate, creationOf, and so forth. The TLinks
are read off directly from the predicate-argument structure,
and their correctness is reflected in an overall syntactic
analysis evaluation [20]. As for spatial relations, our
development data is tagged at question class level
onlyVwhether geospatial reasoning and scoring is
appropriate for this questionVand hence not rich enough
for relation detection evaluation.
Furthermore, although most of the spatial relation detectors

described here use patterns over well-formed syntactic
structures, in the geospatial domain, we also utilize shallower
patterns to account for the variability of expressing relative
locational, or bordering, information. Such patterns typically
overgenerate, particularly if applied over unconstrained
text (e.g., from supporting passage retrieval). However, the
constraint validation in the geospatial domain is focused
on candidate answers only and the relational information

1It is worth noting that in the infamous wrong answer of BToronto[ to the Final Jeopardy!
question in Watson’s televised Jeopardy! match, the BU.S. City[ constraint was in the category,
not the clue, and since spatial analytics is not applied to the category, no spatial constraint was
detected or processed.

Table 1 Temporal questions scored; 662 temporal
questions out of 3,508-question test set.

Table 2 Spatial questions scored; 374 spatial questions
out of the 3,508-question test set.
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about them in structured knowledge bases. Spatial relations
are not considered by our passage-matching framework [4];
hence, we get the benefit of detecting more relations than
just the local syntax would yield, without having to worry
about managing the noise that would result if those patterns
were applied to passages.

Taxonomic reasoning in DeepQA
The TyCor components in the DeepQA system check
whether a particular candidate answer’s type matches the
LAT of the question. DeepQA uses a suite of TyCor
algorithms to accomplish this task [12]. Here, we describe
one specific component of the TyCor suite called YAGO
TyCor and evaluate its impact on the DeepQA system. The
YAGO TyCor performs taxonomic reasoning to address
the type-matching problem and uses structured data from
DBpedia and YAGO.
Two important aspects of the TyCor problem are mapping

the textual mention of a candidate answer to an entity
resource in a structured knowledge base and matching the
LAT of the question to a class in a type system or ontology.
The former, which is referred to as EDM, was already
mentioned earlier; the latter is the Predicate Disambiguation
and Matching (PDM) problem.
The YAGO TyCor EDM implementation is shared across

many of the TyCors and maps an entity mention string
to a ranked list of DBpedia resources with associated
confidence scores, using a variety of unstructured,
semistructured, and structured resources such as Wikipedia
disambiguation pages, redirects, and anchor-link information,
as well as the context of the candidate string (see [12]
for more details).
The YAGO TyCor PDM algorithm starts by obtaining

the set of all YAGO WordNet concepts, whose labels
or IDs explicitly match the lexical type string. We then rank
the concepts on the basis of two pieces of informationVa
concept’s WordNet sense rank and the number of instances
of it in DBpediaVand provide a confidence score based
on a weighted combination of the two factors. The rationale
for this is to use the notion of type popularity, since it
seems to produce reasonably good approximations for the
intended semantics of the lexical type in our use cases.
There are two additional features of our PDM algorithm

that help improve its precision and recall. The first is an
optional domain-specific type-mapping file that records
observed differences in the domain of top word senses.
For example, based on a historical analysis of Jeopardy!
questions, we found the LAT Bstar[ refers to the sense of
star as a movie star roughly 75% of the time, with the
remaining cases referring to the astronomical object,
despite the latter being WordNet’s top sense. Hence, in
the type-mapping file, we map this LAT to the corresponding
YAGO WordNet Concepts with confidences of 0.75 and
0.25, respectively.

The second heuristic we use in PDM helps improve its
recall. We estimate a statistical relatedness between two types
by computing the conditional probability that an instance
with type A also has type B using the metric: NI (A and B)/
NI (A), where NI is the number of instances of the concept in
DBpedia (including instances of its subtypes). In PDM, if the
lexical type matches some YAGO type, we expand it to
include related types based on their conditional probabilities
exceeding some threshold (0.5).

Computing TyCor using ontology type alignment
EDM matches the candidate answer to a set of instances in
DBpedia, obtaining corresponding YAGO WordNet types.
PDM maps the LAT to a set of YAGO WordNet concepts.
After performing EDM and PDM, the TyCor problem is
now reduced to that of ontology type alignment. We compare
the instance types with the LATs and produce a final
TyCor score based on the nature and strength of alignment.
The type alignment is done using a prioritized rule-based
approach. The following set of matching rules are used
(in order of preference):

• Equivalent/subclass matchVWhen the instance type
and the LAT type are either equivalent (synonyms)
in YAGO or the instance type is a subclass (hyponym)
of the LAT type.

• Disjoint matchVWhen the instance type and the LAT
type are found to be mutually exclusive or disjoint based
on the disjointness axioms added to YAGO. In this case,
we produce a strong negative type alignment match,
which generates an anti-TyCor feature [12].

• Sibling matchVWhen the instance type and the LAT are
siblings (i.e., share the same parent concept) in YAGO.
In this case, we also consider the depth of the types in
the tree; the more low-level the types, the more likely
that semantics of the siblings are closely related, and
hence, the stronger the degree of match.

• Superclass matchVWhen the instance type is a
superclass (hypernym) of the LAT, we assign a small
type alignment score. This seems counterintuitive since
the candidate answer is supposed to be an instance of the
LAT and not vice versa. However, we have seen cases
where checking the type alignment in the opposite
direction helps, either due to inaccuracies in the EDM or
PDM step or due to source errors or because the question
itself asks for the type of a particular named entity.

• Statistical relatedness exceeds thresholdVWhen the
statistical type relatedness between the instance type
and the LAT, computed as described above, exceeds
an empirically determined threshold.

• Depth of lowest common ancestor (LCA) exceeds
thresholdVWhen the LCA of the instance type
and the LAT is deep in the taxonomy; it could imply
that the types are strongly related, although there
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may not be a direct-subclass or sibling relationship
among them.

The thresholds used in the type matching conditions
above and the weights of the respective rules are manually
assigned, based on an empirical evaluation conducted
by running the algorithm on a large number of test cases.

Evaluation
We evaluated the impact of the YAGO (An)TyCor scorers
on two baseline DeepQA systems using a blind test set of
3,508 Jeopardy! questions (the same set used for evaluating
spatial and temporal scoring components). The first baseline
consisted of a DeepQA system that used all the question
analysis and candidate generation components but did not
include any answer scorers. The second baseline used
all answer scorers except for the TyCor components. Results
of the experiments, including final QA accuracy and the
corresponding Precision@70, are shown in Table 3.
Adding only the YAGO TyCor and (An)TyCor

answer-scoring components to the baselines showed a
significant improvement in both accuracy (3%–4%) and
Precision@70 (2.5%–4%), demonstrating the value of this
component. Using all the TyCor scorers except YAGO
produced a much larger gain in accuracy and Precision@70
over the baseline, which is expected, given the suite of
TyCor algorithms developed [12] that use a wide variety
of unstructured, semistructured, and structured resources.
However, adding the YAGO TyCor and (An)TyCor scorer
to the TyCor suite (last column in the table) produced an
additional improvement in accuracy, particularly on the
second baseline (which resembles our full DeepQA system),
where it went up almost 1%.

Knowledge-based QA using semantic frames
Despite the known brittleness (described in the introduction
of this paper) of a traditional structured lookup approach
to QA, there are some narrow topic areas that occur in
Jeopardy! for which this approach is well suited. Thus, we
developed a distinct subsystem for Watson that departs from

the overall DeepQA design philosophy and, instead, provides
an independent pipelineVnarrow, brittle, but preciseVfor
handling questions in those topic areas. This pipeline
complements the full DeepQA pipeline and provides an
incremental improvement in accuracy on the very small
subset of questions for which it is applicable. As described
below, some of the questions in that subset are ones
for which the core DeepQA pipeline is poorly suited, which
makes this independent subsystem a particularly useful
complement to the core pipeline in those cases.
Given a natural-language question, this subsystem uses

a collection of frame recognition algorithms to select frames
and maps the textual representation of the question to the
various parts of the frames. In general, the interpretation
of a piece of text may span more than one frame, and
there may be multiple possible interpretations that
generate alternative sets of frame instances. Some of this
is addressed by the general-purpose DeepQA semantic
analysis components [20], and we added some recognition
capabilities for the frame subsystem. For example, in some
cases, when a topic area for a question has been identified,
it is very likely that certain relationships hold between
two entities of certain types; e.g., if a question refers to a
language and a country, there is a high likelihood that the
language is a national language of the country. In those cases,
we assume that the relationship holds as long as we can
find no evidence to the contrary. For example, consider the
following clue:

LANGUAGE: The lead singer of the band Dengue
Fever is from this country & often sings in Khmer.
(Answer: BCambodia[)

The clue does not explicitly ask for the country whose
language is Khmer. However, given that we are able to
identify the topic area and the frame elements involved, the
frame subsystem assumes that the country being asked for
is a country whose national language is Khmer. For arbitrary
text, we would not want to assume that any sentence
containing a country and a language is asserting that the latter

Table 3 Evaluation of accuracy and precision.

10 : 8 A. KALYANPUR ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 10 MAY/JULY 2012



is the national language of the former. As a result, our
general-purpose relation detection components [13] do not
have a rule of this sort. However, in the context of QA, we
have observed that this rule is accurate enough for these
two semantic types. We also have other rules for identifying
frame slot-fillers that are less aggressive than simple
co-occurrence but are more aggressive than our
general-purpose relation detectors.
When the frame recognizers are applied to an input

question, it is possible that the focus of the question
(i.e., the thing being asked for) corresponds to one of our
predefined frames (in this example, the focus indicates the
frame country). In such cases, we can answer the question
by searching all the instance frames of the given type.
We currently employ an exhaustive search method for
finding frame instances and have begun working on an
artificial intelligence planning approach (see the section
on future work).
Exhaustive search is applicable when the focus frame is

of a closed type with relatively few instances (e.g., U.S.
presidents or U.S. states) and when our structured sources
have good coverage for the slots detected in the question.
We can simply enumerate all possible values for the focus
frame element, look up their slot values in our sources,
and check for contradictions with what is stated in the
question. Sometimes, the question asks for a pair (or
an n-tuple) of related elements, and this can be solved by
enumeration as well. For example, consider the following
questions:

PRESIDENTS: The only 2 consecutive U.S.
presidents with the same first name. (Answer:
BJames Madison and James Monroe[)

TRICKY QUESTIONS: Of current U.N. member
countries with 4-letter names, the one that is
first alphabetically. (Answer: BChad[)

These are examples of questions that are poorly suited to
be handled well by the core DeepQA pipeline, which focuses
on generating candidates via unstructured search and
gathering primarily unstructured evidence supporting the
answer. It is unlikely that we would find a textual source that
explicitly asserts that Madison and Monroe are consecutive
U.S. presidents with the same first name and even more
unlikely that we would find one that asserts that Chad is the
alphabetically first four-letter member of the United Nations.
For these questions, the frame subsystem enumerates all
entities of the given type (U.S. presidents or countries) and
looks up the relevant characteristics. For characteristics
that are comparative (e.g., Bthe same first name[ or Bthe
first alphabetically[), this approach has the complete set
of answers that meet the other constraints in the question
(e.g., being consecutive and having a four-letter name) and

can compare those answers to select ones that satisfy those
comparative requirements, again assuming we can recognize
the comparative requirements expressed in English and
process them. We have tailored constraint recognizers for
the Jeopardy! domain that include alphabetical, directional
(e.g., Bfurthest north[), numbers of letters, start/end/contains
letter, numerical (e.g., Bmost[ and Bfirst[), and a few others.
If multiple alternative answers satisfy the constraints

that we formally encode, we attempt to rank them using
the core DeepQA system’s candidate answers. Specifically,
Watson attempts to answer questions using both the main
DeepQA QA components and the frame subsystem. When
the frame subsystem identifies a question as being in a topic
area for which it has exhaustive knowledge and it provides
answers to that clue, those answers are given precedence.
If there are answers that come from both the frame subsystem
and the main pipeline, we use the confidence from the
DeepQA answer ranking [5] for the main pipeline to
determine the final confidence and ranking for the answers.
This allows us to combine insights about constraints from
the frame subsystem with insights about the remaining text
of the clue, which may include relevant concepts that our
knowledge base does not cover.
For 90,771 non-Final Jeopardy! questions, the frame

subsystem provided one or more answers for 2,131 questions
(2.3%). In only 257 questions (0.3%) did it identify exactly
one answer. Of those, 223 were correctly answered, for
an accuracy of 87%, which is much higher than Watson’s
overall accuracy of approximately 70%.
On a set of 1,240 Final Jeopardy! clues, the system

provided one or more answers on 86 (6.9%) questions
and unique answers on 5 (0.4%). Of those five clues, four
were right (80%). It is not surprising that coverage is a little
higher on Final Jeopardy!, since we selected topic areas
to address based (in part) on observed frequency in Final
Jeopardy!. When the frame subsystem gets a question wrong,
it is almost always a result of a failure in the recognition,
such as assuming that some relationship holds when it does
not. However, given the very low coverage, we did not want
to make the recognition any more cautious than it already is.
The frame subsystem has met our expectations for this

approach. It is more precise than the core DeepQA system
alone, and it is able to address a few infrequently occurring
types of questions for which the core DeepQA system is
not well suited. The low coverage of the frame subsystem
makes it unsuitable as a general solution to open-domain QA,
but it does complement the core DeepQA approach on a
narrow range of questions.

Other uses of structured knowledge in Watson
Apart from the three main areas discussed above, several
other DeepQA components use some amount of structured
knowledge when performing their tasks. The Answer Lookup
candidate generator [11] uses relations detected in the clue
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during question analysis to generate candidate answers
by querying a structured source for those relations. Similarly,
the Evidence Diffusion-based answer merger [5] uses
relations found between two candidate answers in a
structured source to diffuse or transfer evidence from one
candidate answer to another, depending on the context
of the clue.
The Answer-in-Clue component, which down-weighs

candidate answers that are referenced in the clue (explicitly
or using alternate names), uses entity equivalence relations
from structured sources to determine if the candidate answer
is the same as some named entity in the clue.
In addition, in the context of Jeopardy!, when the system

is given access to previous answers in the same category,
within-category learning components use relationship
information to infer common links for all answers in
that category. For example, consider the following set
of Jeopardy! clues that appear in the same category:

($200) WHO SENT ME TO THE SC: Ruth Bader
Ginsberg. (Answer: BBill Clinton[)

($400) WHO SENT ME TO THE SC: Clarence
Thomas. (Answer: BGeorge H W Bush[)

($600) WHO SENT ME TO THE SC: Thurgood
Marshall. (Answer: BLyndon Johnson[)

In each of the clues, the question is asking for the president
who nominated the corresponding Supreme Court (SC)
justice mentioned. The system Bgleans[ this fact, not by
understanding the category but by using Bayesian inference
instead, observing that the same relationship is present in
structured sources between previous answers (within the
same category) and corresponding entities in the clue.

Related work
QA systems were historically conceived as natural-language
interfaces to databases in order to relieve the user from
dealing with complex structured query languages. Initial
attempts along these lines were the BASEBALL [1] and
LUNAR [2] systems, where the queries had to (in effect)
conform to a controlled natural-language syntax, and
the target domain was inherently bound to the
underlying database. A more recent example is the
WolframAlpha BComputational Knowledge Engine[
(http://www.wolframalpha.com), which is designed to
perform searches and calculations over manually curated
structured data. The system has a natural-language interface,
and many answers include dynamically generated data
often involving mathematical computations. This engine
has limitations similar to other structured data-based QA
systems in that it is extremely brittle in its performance;
it has high precision in certain narrow domains such as

science and math (provided the question is well-defined and
hence correctly interpreted) but suffers from recall issues,
both in question understanding given syntactic and/or lexical
variability, and in the coverage of the manually curated data.
A more prominent move was observed toward using

unstructured information and document retrieval in
QA systems [21] because of the exponential increase in
machine-readable textual information, particularly with
the advent of the Web. A notable example is the START
system developed at MIT [22], which used both structured
and unstructured information. It focused on Breversible[
transformation rules that translate natural language into
T-expressions (T stands for ternary) of the form
hsubject relation objecti and then back into natural
language when providing answers. START also exploits
Omnibase [23], a Bvirtual[ database aimed at executing
START-generated queries against multiple Web knowledge
sources, thus providing a uniform access interface to them.
While START essentially relies on explicitly matching
natural-language annotations across the question and the
underlying content, Watson, which is based on the DeepQA
framework, uses a much more elaborate machine learning
scheme, along with a rich and diverse set of analytics, to
combine information from both structured and unstructured
sources, thus giving it higher recall.
With regard to our frame processing system in DeepQA,

we note that frame semantics, which was first introduced
in cognitive linguistics by Charles Fillmore [24], became
popular in NLP through the development of FrameNet [25].
QA systems that explicitly take into account local frame
contexts include those described in [26] and [27]. These
systems take the common approach of running frame
annotators on both the question text and the candidate
answer passages and applying different semantic matching
algorithms against the frames detected. This approach is
inflexible because of the sparseness of automatic annotation
and the lack of lexical coverage. In contrast, the approach
we take in Watson is more open-ended in that we allow
partial interpretation of frames, only filling in certain frame
slots on the basis of information available in the question,
and then subsequently filling the knowledge gap iteratively
(on the basis of local and global frame context), using the
whole structured and unstructured knowledge embedded
in Watson.

Future work
We are exploring various extensions to our structured
data algorithms. For the problem of ontology-based type
coercion, we plan to use a wider and more diverse set
of ontologies available in the Linked Open Data cloud to
increase our domain coverage and obtain finer-grained type
information [28].
For frames, we are working on an artificial intelligence

planning-based solution to interpreting and populating
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frames. In this approach, a planner starts with what is
currently known (i.e., initial populated frame components)
and move toward the focus frame, acquiring necessary
information along the path (filling the knowledge gap) and
spanning multiple frames if necessary. For example, consider
the following question:

WAR MOVIES: A 1902 Joseph Conrad work set
in Africa inspired this director to create a controversial
1979 war film.

The frame recognizers map this question text to instances
of the Book and Movie frames, as shown in Figure 2.
Based on the frame instances populated, the planner

generates the following plan:

1. Solve for the Book by calling DeepQA with the generated
question: BThis 1902 book by Joseph Conrad is about
Africa.[ (Answer: BHeart of Darkness[).

2. Use our structured data to verify that the publication
date of the book is 1902.

3. Invoke DeepQA to solve for the Movie given the
Book, using the question BHeart of Darkness
inspired this controversial 1979 war film.[ (Answer:
BApocalypse Now[).

4. Use our structured data to verify that the release date
of the movie is 1979.

5. Use our structured data to look up the director of the
movie (answer: BFrancis Ford Coppola[).

Some steps (in particular, the calls to DeepQA) associate
probabilities with their results, and the planner uses these
to merge results from different analyses. The planner
generates multiple plans for a question and executes the plans
in parallel. Finally, it selects the top answer to the question
as the result with the highest confidence across all frame
interpretations.

An advantage of this planning paradigm is that it helps
the DeepQA system use information from unstructured
text analysis to aid structured data inference and vice versa.
Another advantage is the declarative nature of the
framework, making it possible for developers to add and
refine semantic frame definitions and recognizers. The
underlying planner works off the declarative specifications,
composing plans and executing them on the basis of content
extracted from the question.
Finally, we are working on techniques to automatically

induce typical concepts and relations in a frame from a large
corpus using data mining. For example, by observing
frequent occurrences of Bauthoring[ and Bpublishing[
relationships in the context of books (in a background
corpus), we can induce author and publication-date elements
in a Book frame. Such techniques also extend to discovering
inter-frame relationships (e.g., between the Book and
Movie frame shown above) using custom corpus processing
resources [17]. We expect these techniques to substantially
reduce the human effort needed to engineer a general-purpose
semantic frame-based system.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., Wikimedia Foundation, Cycorp, Inc., Wolfram
Group, or Trustees of Princeton University in the United States, other
countries, or both.
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