Special Questions

and techniques

J. M. Prager
E. W. Brown
J. Chu-Carroll

Jeopardy!™ questions represent a wide variety of question types.
The vast majority are Standard Jeopardy! Questions, where the
question contains one or more assertions about some unnamed
entity or concept, and the task is to identify the described entity or
concept. This style of question is a representative of a wide range
of common question-answering tasks, and the bulk of the IBM
Watson™ system is focused on solving this problem. A small
percentage of Jeopardy! questions require a specialized procedure to
derive an answer or some derived assertion about the answer. We
call any question that requires such a specialized computational
procedure, selected on the basis of a unique classification of the
question, a Special Jeopardy! Question. Although Special Questions
per se are typically less relevant in broader question-answering
applications, they are an important class of question to address

in the Jeopardy! context. Moreover, the design of our Special
Question solving procedures motivated architectural design
decisions that are applicable to general open-domain
question-answering systems. We explore these rarer classes of
questions here and describe and evaluate the techniques that we

developed to solve these questions.

Introduction

One of the more challenging aspects of Jeopardy!** is its
wide variety of questions. Not only do Jeopardy! questions
span many subject domains but they also come in a

variety of forms. The most common form by far is the
Standard Jeopardy! Question. Standard Questions consist of
statements expressing one or more assertions about an
entity or concept, which remains unidentified in the question
text. Answers are typically nouns or proper nouns but
sometimes verbs or adjectives. The goal is to name the
unidentified entity or concept based on relating the assertions
in the question to what is expressed about the entity in some
underlying body of natural-language content, e.g.,

DELICACIES: Star chef Mario Batali lays on the lardo,
which comes from the back of this animal’s neck.
(Answer: “pig”)

It should be noted that often not all information
in a question describes or relates directly to the answer.

Digital Object Identifier: 10.1147/JRD.2012.2187392

It is the job of the question-answering system to
tease out the relevant information for answering the
question.

Beyond Standard Questions, however, a small fraction
of the questions in Jeopardy! require a specialized
computation to derive an answer or a constraint about
the answer. We call any question that requires such a
specialized computational procedure, selected based
on a unique classification of the question, a Special
Jeopardy! Question. Sample Special Questions and
Standard Questions that require special processing are
shown here:

Puzzle: ASTRONOMICAL RHYME TIME:
Any song about earth’s natural satellite. (Answer:
“Moon tune”)

Multiple Choice: BUSY AS A BEAVER: Of 1, 5, or
15, the rough maximum number of minutes a beaver
can hold its breath underwater. (Answer: “15”)

Common Bond: BOND, COMMON BOND: Fan, form,
poison pen. (Answer: “letters”)

©Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed
royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/12/$5.00 © 2012 IBM

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

J.M. PRAGER ET AL. 11 :1

Fill-in-the-Blank (FITB): SCHOOL OF ROCK: History:
Herman’s Hermits hit number 1 in 1965 singing “I’'m”
this man, “I Am.” (Answer: “Henry VIII”)

Constraint Bearing: ARE YOU A FOOD“E”?:
Escoffier says to leave them in their shells & soak
them in a mixture of water, vinegar, salt, and flour.
(Answer: “Escargots”)

Pun bearing: HIP-HOP ON POP: From this “M.D.”:
“It’s like this & like that & like this & uh, its like
that & like this & like that & uh” (Answer: “Dr. Dre”)

Special Questions fit well in the standard DeepQA
processing pipeline but may have their own candidate
generation or scoring components and, in some cases, their
own machine learning model [1]. In the question analysis
paper in this issue [2], we discuss the Special Question types,
describing how they are recognized and what annotations
have been created as a result. In this paper, we focus on
processing techniques that have been developed to answer
the most common of these types, including FITB, Puzzle
(questions with constructed answers), and Multiple Choice.
We also describe the special processing techniques used for
Standard Questions with special aspects, namely associated
lexical constraints or puns.

The FITB question type is the most frequently
occurring Special Question, representing approximately
4% of all Jeopardy! questions. The next most frequent is
Puzzle (2%), followed by Common Bond (0.7%) and
Multiple Choice (0.5%). Overall, most of these question
types are relatively infrequent. However, since Special
Question types often appear as entire categories (thus
representing one sixth of a Jeopardy! round), they
must be addressed for any system to be consistently
competitive at Jeopardy!. In this paper, we describe the
processing of FITB and various subtypes of Puzzle and
Multiple Choice questions. Common Bond processing
is described as a variation of “missing link” detection
in [3]. Approximately 13% of questions are accompanied
by a lexical constraint; 1% employ a pun on the answer.

Although each Special Question type may require its own
unique mechanisms and resources for candidate answer
generation and evaluation, there are three general techniques
that are broadly applicable across question types. These
techniques include the following:

1. Question decomposition and answer synthesis—A
subset of Puzzle questions require decomposition into
parts, solution of the parts, and then an algorithmic
recombination into candidate answers. We discuss in this
paper decomposition as applied to Special Jeopardy!
Questions; a broader discussion of decomposition in
IBM Watson* is given in [4].

11:2 ;. M. PRAGER ET AL.

2. Use of hints such as lexical constraints and puns—Lexical
constraints, e.g., 10-LETTER “W”ORDS, usually
describe the length of desired answers and/or letters that
are contained in desired answers. Similarly, puns, e.g.,
this “colorful” river, describe a characteristic of the
answer. This kind of information is not useful when
searching for candidate answers (because the text of these
hints is generally not collocated with the answers in our
textual resources) but is highly useful when evaluating
candidate answers.

3. Category-based revealed-answer learning—Qccasionally,
the presence of category-based lexical constraints and/or
Special Question types is not immediately obvious from the
category or question and must be inferred from answers
that have already been revealed in the given category.

In the next section, we describe these general techniques

in more detail. We then describe individual Special Question
types, including how the candidate answers for each type
are generated and scored, and the solving strategies used
for each type. In the following section, we provide evaluation
results and finish with related work and conclusions.

Techniques for Special Question processing
The special processing procedures that we have developed
may be divided into two broad categories: techniques that cut
across question types and those that are specific to a single
type. The former are described in this section, whereas the
latter are covered in a later section.

Question decomposition and answer synthesis
Many Puzzle questions, including all Before & After and
most Rhyme Time questions, require decomposition for
successful solution. For example, the answer to

BEFORE & AFTER: The “Jerry Maguire” star who
automatically maintains your vehicle’s speed.
(Answer: “Tom Cruise control”)

is a made-up phrase that is extremely unlikely to be found
in any reference corpus and therefore is generated by
performing two separate searches and combining the results.
This decomposition and synthesis is handled in a common
way, as illustrated in Figure 1. In general, the stylized forms
of these questions indicate how to perform the decomposition.

Specifically, decomposition for Puzzle questions is
performed by matching manually developed Prolog rules
against the question’s predicate-argument structure to
identify its subparts. This process is similar to that for
Standard Question parallel decomposition, described in [4],
but is specialized to the styles and formats commonly
associated with the Puzzle question types. The recognized
subparts (called SubQuestionSpans) are then used to
generate intermediate candidate answers, called

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

The "Jerry Maguire" star who automatically
maintains your vehicle's speed

Queston Candidates
[the "Jerry Maguire" star]
SubQuesltionSpan oo Pre-(ieilgtd;dates
Questign automatically maintain; Candidate Synthesis
analysis your vehicle's speed j Generation
‘FubQues}ionSpanJ—

Figure 1

Decomposition flow. The general flow for the decomposition process is illustrated by the “Tom Cruise control” example. Approximately 100
precandidates are generated from either SubQuestionSpan, but only the ones that contributed to the final correct answer are shown.

precandidates, and the precandidates are brought together in
a synthesis stage to form final candidate answers in the
appropriate way (e.g., overlap for Before & After, rhyming
for Rhyme Time).

Constraints and puns

A common feature of many Jeopardy! questions is that they
contain hints to the answer in the form of lexical constraints
and puns. Lexical constraints are typically requirements,
most often found in the category but sometimes in the
question text, that the answer be a certain number of

letters or words long; or begin with, end with, or contain
certain letters or letter sequences; thyme with a certain word;
or have other lexical properties. An estimated 13% of
Jeopardy! questions, including approximately 35% of
questions that are dictionary definitions of common terms,
have one or more such constraints associated with them.
Puns are much less frequent—about 1% —but are more
challenging to process and are possibly more interesting
because of the limited work to date in the field of
computational humor (however, see, e.g., [5]). Although
such properties are not used to generate candidates, they
are used to score existing candidate answers on the basis
of their degree of match with the recognized pun element.
These hints in principle apply to any question type, but in
practice, they occur mostly in Standard Jeopardy! Questions,
both as suggestions to help the answering process and to
ensure uniqueness when the answer may be ambiguous.

Lexical constraints
A lexical constraint might be instantiated:

STARTS & ENDS WITH “A”: In 1981 this country acted

as go-between to secure the release of the 52 Americans
held by Iran. (Answer: “Algeria”)

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

or may be instantiated only partially:

ONLY ONE VOWEL: Proverbially, you can be “flying”
this or be this “and dry”. (Answer: “high”)

The second example is interesting in several respects:
it has a lexical constraint, is decomposable, and
is a FITB.

Lexical constraints may also be vague or ambiguous,
e.g., quoted terms in the category indicate that the quoted
text string is part of every answer, but it is often unclear
(even to humans) whether the string has to start the
answer, or start any word in the answer, or can be anywhere
in the answer. Proper interpretation requires knowledge
of the conventions typically used in Jeopardy!. Careful
observation of the Jeopardy! style of questions and associated
answers helped us fashion the constraint processing
to be as narrow as possible without penalizing correct
answers. On the basis of this analysis, we have developed
a rule-based recognizer to identify the most frequently
observed constraints, which we discuss in the next
section.

The syntax of lexical-constraint-bearing categories is not
always strictly English (THE L“ONE”LIEST NUMBER,
IN THE “GN”OW, GOING INTO O__T) and sometimes
borders on that of word problems (ONE O, THEN 2 O’s).
Our evaluation of our recognition algorithm on unseen
questions showed that our existing recognizer fails to
identify a small set of constraints expressed in unanticipated
ways. However, since constraints typically occur in
categories, patterns common in revealed answers in the
category are useful for inferring constraints in recall
failure cases. Therefore, we developed an inference process
that complements our recognition process, which we
discuss in the section “Learning from Revealed Answers.”

J.M.PRAGER ET AL. 11:3

Table 1 Sample constraints.

Constraint class

Sample category

Sample answer

Alliteration ALLITERATIVE ARTISTS Pablo Picasso
Blank ON_ On Deck
DoubleLetter DOUBLE “H” Fishhook
CommonEnding -OID Celluloid
NLetterRepetitions “Un2 Futures
Rhyming RHYMES WITH JOCK Frock
SubStringDisjunction “CHURCH” AND “STATE” Churchkey
SyllableCount MONOSYLLABLES Ain’t

Constraint objects

Constraint processing is handled by the Constrainer
component, which consists of constraint classes and
management infrastructure. Each constraint class handles a
different kind of constraint and has the following
capabilities:

e Recognition and instantiation of a constraint class from
the question.

e Inference of a constraint class from revealed answers in
the same category.

e Testing a candidate for passing or failing the constraint.

Constraint classes are manually developed to cover the most
common cases of lexical constraints. For example, one class
consists of constraints that specify the length in characters
for the answers and another of constraints that specify
substring requirements for the answers. Instantiated
constraint objects can work in conjunction to ensure that all
the constraints are satisfied. For example, from the category
10-LETTER “W”ORDS, two constraint objects are
constructed. One passes only answers that contain ten letters,
and the other passes only answers that begin with the
letter “w”; these are used together to determine whether
candidate answers satisfy the entire category constraint.

There are a few dozen different constraint classes; a
selection of these, along with categories that trigger them
and answers that pass, is shown in Table 1. All of these
particular examples derive from the category, but some
instances are occasionally found in the question text,
e.g., “Like young canines, baby rats are known by this
one-syllable term”.

For each question, the Constrainer process is run after
question analysis, and every constraint object analyzes
the question to see if it should become active. An
ActiveConstraintSet of zero or more active constraint objects
will be constructed as a result. In the answer-scoring process,
each candidate answer produced by Watson [6] is tested
by the ActiveConstraintSet and is given features to indicate

11:4 ;. M. PRAGER ET AL.

whether no lexical constraints exist for this question or
whether it passed or failed if constraints are identified.

Puns

As mentioned in the paper on question analysis [2], puns that
occur in the Jeopardy! category are usually solely for
entertainment purposes—to dress up a potentially dry subject
in a catchy phrase, such as “THE MALE IS IN THE
CZECH?”, about Czechoslovakian men—but most often do
not need to be understood or processed in any different
way to answer the questions themselves. Puns in the
questions, on the other hand, are often clear hints at the
answers and benefit from being directly addressed.

The most common repeating form of puns that we have
recognized—and the only kind that we attempt to solve—is
in the form of a quoted phrase modifying the question focus.
We identified four subclasses, listed here with an example
of each:

SUBSTRING: SLOGANEERING: In 1987 using the
slogan “Catch the wave”, Max Headroom pitched this
“new” soft drink. (Answer: “New Coke”)

SYNONYM: GEOLOGY: Due to its luster, German
miners gave this “pleasant” rock its name, which means
“spark”. (Answer: “gneiss”, whose homophone “nice”
is a synonym of “pleasant”)

INSTANCE: F: An opera from 1900 gave wing to this
popular “insect” composition by Rimsky-Korsakov.
(Answer: “Flight of the Bumblebee”)

ASSOCIATION: I DO KNOW JACK: Marilyn Monroe
made her major TV debut in 1953 on this “stingy”
comedian’s TV show. (Answer: “Jack Benny”)

Lemmatization is performed on the pun term and the answer

candidate, and when either is a multiword term, matching
is attempted with individual terms as well as the whole string.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

Homophones of each are included in the match operation
(see the SYNONYM example above where “pleasant”

is matched with “gneiss” through “nice”). For the
SUBSTRING type, the pun term is a substring of the answer.
For SYNONYM, the pun term is synonymous with an
answer term, using WordNet** [7]. For INSTANCE,

an answer term is an instance or subtype of the pun term,
using YAGO TyCor [8]. For ASSOCIATION, there is a
strong association (but not through any of the previous three
kinds) between an answer term and the pun term; we test for
such association by measuring the degree of correlation
between the two terms using a corpus of n-grams extracted
from a collection of English text consisting of encyclopedia
and newswire articles [3]. This degree of association is
compared with an empirically determined threshold to decide
whether an association pun relationship exists.

Of course, it is not known in advance which of these types
of pun match is in play; therefore, each is attempted, and
if any test succeeds, a pun is asserted. This results in a
PUN feature being generated for Watson’s machine
learning phase.

Learning from revealed answers

Constraint and question class inference

Jeopardy! provides a form of feedback within a category
by making the correct answer available to the players
after each question is played. Watson uses these revealed
answers to improve its analysis results, such as for lexical
answer type (LAT) detection [2] and identifying certain
category-question relationships [10]. In this paper, we
describe how revealed answers are used in constraint
recognition and inference, as well as in question
classification.

Watson’s revealed-answer constraint learning allows it
to infer a constraint that was missed when analyzing the
category or to remove a constraint that was incorrectly
detected or inferred for the category.

A constraint object inferred on the basis of revealed
answers must satisfy the following two conditions: 1) The
constraint object must pass all answers so far revealed in
the category; and 2) the a priori probability of this constraint
is low enough for Watson to confidently hypothesize the
presence of the constraint. In other words, we are looking for
situations where it is very unlikely that the revealed answers
would happen by chance to satisfy the conditions for a
(nonoperative) constraint. Condition 2 is established by a
formula based on Bayesian inference that uses statistics
derived from a large corpus (~75,000) of previously seen
Jeopardy! answers; this corpus provides the prior probability
that a conditioned constraint applies to a random answer.
We used this to compute the probability that a constraint is
operative given the (1, 2, 3, or 4) revealed answers so far
in the category. When this probability exceeds an empirically

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

determined threshold (in the Watson system, this threshold
is set to 96%), the constraint is made active for the remaining
questions in the category. As with constraints activated by
regular recognition, retraction will occur if future revealed
answers do not pass the constraint.

Some Special Question types also undergo the same
treatment: the type of the question and the solving
mechanism required for it are of a “classical” well-known
variety, but the usually clear category indicator is
disguised using some kind of wordplay, such as using
“WHIRLED CAPITALS” to mean “WORLD CAPITAL
ANAGRAMS”. Without some additional detection
mechanism, the type of the category will not be
recognized; hence, five questions will potentially be lost.
The same revealed-answer learning process used for
lexical constraints is used for Special Question type
inference.

In Table 2, we give examples of learning of both a
lexical constraint and a Puzzle type (anagram) that had
occurred during the Watson development period. Column 4
in the table gives the estimated probability that the
constraint/question type is in play at this point, assuming
a top-to-bottom order of question selection, and column 5
indicates whether that probability exceeded the threshold
and, hence, whether the constraint/type was triggered. For
the first group of questions, the system learned after three
revealed answers that answers had to contain four letter “I”s.
For the second group, it learned that the answer was an
anagram of all or a section of the question after having
seen just two answers.

Revealed-answer learning is in place for two reasons:

1) to react to situations that have been observed in training
data and for which programmed mechanisms are in place,
but because of unexpected phraseology in test data, the
occurrences are not recognized; and 2) bugs or other
deficiencies in the recognition process. As might be expected
over time, occurrences of the second diminished, but the
former continued to occur at a low level. In the section

on evaluation, we show how this learning can complement
recognition of constraints.

Selected Special Question types

In this section, we discuss the processing of three of the most
common Special Jeopardy! Question types: Puzzle, Multiple
Choice, and FITB.

Puzzle

Puzzle questions are those questions for which, in general,
one would not expect any text corpus to contain the answer
along with the facts asked about in the question. Instead,
the answer must be constructed. The most obvious type

is possibly Math, where the question is a mathematical
expression that must be evaluated, but there are also Before
& After, Rhyme Time, Anagram, and Hidden Words. We

J.M.PRAGER ET AL. 11:5

Table 2 Examples of categories with solving hints/directions, which DeepQA did not recognize directly but could

learn from revealed answers.

Category Question Answer Probability Triggered
I-I-I-I It's the inflammation of the gums Gingivitis .0062 No
On Dec. 10, 1817 it entered the Mississippi .0089 No
Union as the 20th state
In this early '90s video game by Sid Civilization 5917 No
Meier, you built "an empire to
stand the test of time"
It's the process of converting data Digitization 9957 Yes
into a form that can be used by
computers
Voters who "take" this can propose Initiative .9999 Yes
their own constitutional
amendment
WHIRLED CAPITALS Non old London .00017 No
In vane Vienna 9453 No
[rasp Paris 9999 Yes
Ape rug Prague 9999 Yes
In silk, eh? Helsinki 19999 Yes

had observed that many Puzzle subtypes occurred only
once or twice in a large set—for example, those involving
computing Scrabble** scores of words or converting Roman
numerals. We are not going to address these here; in addition,
the processing of these questions, once recognition has
occurred, is relatively straightforward. We instead describe
what we have observed to be some of the most common
Puzzle subtypes, namely Before & After, Rhyme Time,
Math, Anagrams, and Hidden Words.

For the most part, puzzle types are indicated by the
category, but occasionally, they are specified in the question
text itself. Below are some examples of puzzle types that
we discuss in this paper:

BEFORE & AFTER: The “Jerry Maguire” star who
automatically maintains your vehicle’s speed.
(Answer: “Tom Cruise control”)

RHYME TIME: A class that teaches you all about
equines. (Answer: “horse course”)

MATH: Twenty-three plus eight minus sixteen.
(Answer: “15”)

SHAKESPEAREAN ANAGRAMS: She’s “one
girl” King Lear should have been leery of.
(Answer: “Goneril”)

HIDDEN U.S. STATES: Linguistically, did ahoy

enter the English language from sailors? (Answer:
“Idaho”)

11:6 . M. PRAGER ET AL.

Each of these puzzle types requires a special recognition
and solving strategy, although some of them share a
common infrastructure. In this section, we focus on how
candidate answers for different types of puzzle questions
are generated. To facilitate scoring of candidate

answers, each candidate is given a puzzle rank and a
puzzle score feature. A candidate answer’s puzzle rank
feature value is its rank in the candidate list when
sorted by puzzle score. The features are used in the final
merging component [1] to help compute the overall
rank of each answer. An example of the advantage

of using a combination of Puzzle and other features is
shown in

ANAGRAMS: It’s the only kitchen appliance Rosetta
knows how to use (Answer: “toaster”)

“Toaster” is not the only anagram of one of the question
words, but it is the only one that is an instance of the LAT
“appliance”; therefore, only it will generate a good

TyCor score [8].

Before & After and Rhyme Time

A characteristic of all Before &After and the large majority
of Rhyme Time answers is that they are made-up phrases
that do not naturally occur in any text and must be
synthesized. Before & After questions always contain
definitions or descriptions of two different entities that
must be overlapped to give the answer. The majority of
Rhyme Time questions contain definitions or descriptions
of two different entities that must rhyme. Consider the

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

following examples where each SubQuestionSpan is
underlined:

BEFORE & AFTER: 1961 invasion of Cuba wrapped
in a tasty pastry. (Answer: “Bay of pigs in a blanket”)

AUTHORS’ RHYME TIME: Ian’s Scandinavian rodents.
(Answer: “Fleming’s lemmings”)

To solve these questions, the system runs Hypothesis
Generation on each SubQuestionSpan to generate the
precandidates and then synthesizes final candidate answers
as follows:

e For Before & After, only multiword precandidates
are retained. Full candidate answers are synthesized
by pairing precandidates generated from different
SubQuestionSpans in which the trailing word(s) from
one precandidate matches the leading word(s) from the
other precandidate. For example, “Tom Cruise” and
“Cruise control” would result in the candidate answer
“Tom Cruise control”. The puzzle score is calculated
by taking the product of the reciprocal of each
precandidate answer’s rank, multiplied by the
number of words in the overlap sequence (which is
typically one).

e A similar calculation happens for Rhyme Time, except
that the pair of precandidates are tested for rhyme and
not overlap. The output candidate is the concatenation
of the two precandidates. The order of the precandidates
in the composed answer is determined by which one
corresponds to the main clause or head noun in the
question—that one becomes the head noun of the answer
with the other precandidate prepended as a modifier.

In the case of the possessive-plural construction as
presented in the example above, the answer’s syntax
directly mirrors the question’s syntax. The puzzle score
is calculated by taking the product of the reciprocal of
each precandidate answer’s rank, multiplied by the
pair’s rthyme-score."

If the category has a modifier (e.g., SUPREME COURT
BEFORE & AFTER, EDIBLE RHYME TIME), then the
precandidate generation process is run twice. In the first pass,
the modifier is appended to the left SubQuestionSpan,

and in the second to the right one, as the modifier may

be applicable to different spans in different questions.

'The rhyme score is in the range of 0-1 and is calculated by a utility that has access to a
phonetic dictionary (the Carnegie Mellon Pronouncing Dictionary cmudict.0.6, with
extensions) and calculates what contiguous fraction of the phonemes match, going from right
to left. Out-of-vocabulary words have their phonetic scheme estimated by lexical similarity to
words in the phonetic dictionary. For RHYME TIME, only precandidate pairs that have a
mutual rhyme score of greater than 0.35 are considered to rhyme and to generate an output
candidate.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

About 10% of Rhyme Time questions are not puzzle
questions, but rather have naturally occurring thyming
phrases as answers. For example,

RHYME TIME: The pacifistic influence of the 1960s
hippie movement. (Answer: “Flower Power™)

These are not syntactically distinguishable from the

Rhyme Time questions of the puzzle variety. Thus, for
Rhyme Time, an additional path is used whereby the
question text is treated as a search string, and the candidate
answers are constrained to be rhyming phrases.

Math
There are three kinds of Math questions that are considered
“special,” as illustrated here:

1. MATH CLASS: It’s the square root of the square root
of 16. (Answer: “2”)

2. GEOMETRY: If 3 angles in a quadrilateral are 40°,
140° and 80° then the other angle must be this many.
(Answer: “1007)

3. YOU DO THE MATH: The number of legs on a spider
plus the number of legs on a fly. Answer: “14”)

The kind exemplified by question no. 1 above is explicit
arithmetic expressions to be evaluated, sometimes with
surrounding language such as “Itis ...” or “... equals this”.
Such math expressions are evaluated by a Definite-Clause
Grammar (DCGQG) that parses the expression and produces

a parse tree. The DCG recognizes any mix of alphabetic
and numeric representations of numbers and operators. The
tree is traversed and recursively evaluated to a number.

The second kind, as in question no. 2, describes a situation,
usually geometric, for which substitution of given numbers
into an unspecified formula is required. The component
that handles these consists of approximately 20 geometrical
and arithmetic objects (e.g., diameter, triangle, and sequence)
and a similar number of formulas relating values of these
objects to a computed result. This set was developed to cover
the math level observed in past games—clearly not all
of geometry or arithmetic. Question analysis determines
which objects are given values in the question and which
are asked for. The formula that computes the answer to
question no. 2 corresponds to the following English rule:

If the diameter is mentioned and the circumference has
a defined value, compute the circumference’s value
divided by pi.

The third form, as illustrated in question no. 3, asks for “the
number of X” or “the number of X in Y”, possibly combined
with another instance of such or a literal number (e.g.,
“BODY COUNT: Usual number of ribs divided by 8”).

J.M.PRAGER ET AL. 11:7

The combining is assumed to be one of +, —, x, and /. The

presence of a combining operator and a second argument

is another example of the need for question decomposition.
Two techniques are used for calculating the value of

the “number of” phrases. One approach performs a lookup

that returns a ratio between two units of measurements. If

that approach fails, a search against an n-gram corpus is

used to identify the integer most closely associated with

the terms in the question (e.g., “legs” and “spider”).

Anagrams and Hidden Words

We observed from our development data that answers to
Anagrams and Hidden Words, whether common words or
proper names, are covered by one of two resources: 1) titles
of Wikipedia** documents—sometimes via redirection—or
2) entities found in the instance lists maintained by R2,

our named entity recognizer. This observation enabled us
to use a simple generate-and-test regimen based on these
resources.

We generated two resources for these question types. The
typed instance sets (TISs) are dynamically extracted word
lists from R2 when the category has a modifier that we
recognize as the common-word description or (rough)
synonym of a semantic type. Thus, the category “ANIMAL
ANAGRAMS?” triggers the instance lists of type Animal;
the category “ANAGRAMMED THEORETICAL
PHYSICISTS” triggers Scientist. The untyped instance set
(UIS) is a list of all of the Wikipedia titles.

For Anagrams, a series of heuristics is applied in order
to determine the section of the question that provides the
anagram letters:

e The entire question, if it is less than a certain length.

e The span that precedes or follows a colon to the
beginning or end of the question, if less than a certain
length.

e Any word or quoted phrase in the question.

If the letters in the Anagram span are determined to be a
rearrangement of the letters in any term in an instance

set, then that term is generated as a candidate. This operation
is first performed with the TIS if the category specifies a
type that triggers an instance list. If no candidates are
found, the processing is performed with the UIS. In the
case of more than one resulting candidate, the list is sorted
with longer entries first; in the case of same-length entries,
the term with the lower inverse document frequency is
preferred.

In Hidden Words questions, the answer is a word formed
from letters that appear consecutively in the question, but
not as a word per se, and are assumed to cross word
boundaries. In the example given earlier, the answer “Idaho”
is found inside “... did ahoy ...”. For Hidden Words, any
term in an instance set that is a substring of the question

11:8 . M. PRAGER ET AL.

with spaces removed but is not a substring of the original
question becomes a candidate. The candidate list is sorted
in the same way as for Anagrams above.

Multiple Choice

Multiple Choice questions provide the correct answer in
the category or question text as a choice among three or
more possible answers. The rest of the category or question
text provides a question or relation that must be solved to
select the correct answers. Here are some examples:

THE SOUTHERNMOST NATION: India, Italy, Iceland.
(Answer: “India”)

BRANSON, HANSON OR MANSON: A city in the
Ozarks. (Answer: “Branson”)

In the first example, the category gives a relation that

must be used to select the correct answer. In this particular
case, the relation is a geospatial superlative relation

applied to all candidate answers, which are countries,

in aggregation. In the second example, the question text
gives a question that, on its own, can return more than

one valid answer, but in combination with the multiple
choices given in the category, selects the correct answer
from among the choices.

To solve Multiple Choice questions, Watson must
detect the Multiple Choice question (i.e., classify the
question as a Multiple Choice question), identify each of
the answer choices (which may appear in the category
or the question text), and then use the rest of the category
or question text to select the best answer. Multiple Choice
classification and identification of the answer choices occurs
during question analysis using rule-based analysis and
heuristics. This is described in more detail in [2].

After question analysis, Watson routes Multiple Choice
questions to a Multiple Choice candidate generation
component. This component generates each answer choice
as a candidate answer. To score these candidates, it checks if
the category or question text contains a known relation to
solve. The current set of known relations is limited to
geospatial relations that ask about relative size, population,
or location (e.g., Northernmost Capital). If the system
detects one of these relations, it performs entity
identification on the answer choices to map them to the
actual geographical entities, finds the geographical entities
in DBpedia [10], extracts the appropriate attributes from
the DBpedia entry (e.g., latitude and longitude), and
invokes an appropriate reasoning method to solve the
relation. The Multiple Choice answer selected by the
relation is assigned a Multiple Choice Feature score of 1,
and the other Multiple Choice candidates are assigned a
0. If no relation is detected, all Multiple Choice
candidates will receive a feature score of 1 to

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

distinguish them from candidates generated via other
means.

During final merging and ranking [1], we use a machine
learning model trained specifically for Multiple Choice
questions that emphasizes the Multiple Choice feature.
Answer score features generated by the rest of the analytics
in Watson are then used to distinguish the correct answer
from among the Multiple Choice candidates.

Fill-in-the-Blank

FITB questions come in a few different styles, but in general,
they require completing a phrase, a quote, or a title. The
missing words to be returned in the response may be
explicitly represented with a blank or more implicitly
represented as a LAT adjacent to a quoted phrase. Here are
some examples:

COMPLETES THE PLAY TITLE: Howard Sackler’s
“The Great White __". (Answer: “Hope”)

INVERTEBRATES: It completes the expression “happy
as a” this “at high tide”. (Answer: “clam”)

DOUBLE, DOUBLE: The classic name for the double
promontories at the Strait of Gibraltar is “the Pillars of”
this mythic hero. (Answer: “Hercules”)

The first example requires completing the title of a
play, the second example requires completing a
common expression, and the third example requires
finding the missing word in the name of a famous
physical object.

Watson solves a FITB question by first detecting the
FITB question during question analysis (i.e., classifying
the question as a FITB) and identifying the missing
portion of the quote or phrase that must be found. The
missing portion is typically represented as a “blank,” such
as underscores, or as a LAT adjacent to a quoted phrase.
In the latter case, the LAT is often just a pronominal,

e.g., “this”, but it may also be a specific type or class,
e.g., “this mythic hero”.

Watson runs the rest of FITB processing as a candidate
answer generator, operating on the results of primary passage
search [6]. For each primary search passage, the FITB
candidate answer generator searches the passage text
for the quoted phrase or relevant context from the question.
This search requires some fuzzy matching in case the
question text does not exactly match the wording in the
passage. When a match is found, the FITB candidate
answer generator generates candidate answers by
extracting the text from the passage that corresponds to
the “blank” in the question text. This text may produce
multiple candidate answers as longer and longer phrases
are extracted as candidate answers, up to sentence boundaries.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

The candidate answers receive a FITB rank feature and
a FITB boundary feature for use in the final merging and
ranking model. The rank feature is based on the search
rank of the passage from which the candidate answer
was extracted, and the boundary feature characterizes the
boundary between the matched question text and the
extracted text corresponding to the blank, recognizing that
certain boundaries (e.g., nothing separating the matched
question text and candidate answer, all within quotes)
are stronger indicators than other boundaries (e.g., a
semicolon separating matched question text and candidate
answer).

Evaluation

Special Questions

We evaluate two aspects of processing for the Special
Questions described in this paper—the accuracy of

each Special Question type classifier, and the
question-answering accuracy of the end-to-end system

on each Special Question type. To evaluate the performance
of the Special Question type classifiers, we generated a
gold standard for question type classification by manually
annotating the type of all questions in a test set of 3,571
blind questions, extracted from 66 Jeopardy! games after
removing audiovisual questions. The results (including F'
measure, accuracy, and Precision@70?) are shown in
Table 3.

From the table, we see that the performance of the
Special Question type classifiers is fairly consistent for the
measured types. Generally, the Special Question types are
quite rare in this test set; FITB is the most common, at 3.8%.
Since our test set was constructed from randomly selected
Jeopardy! games, these frequencies reflect the actual
distribution of these question types in our data set. Moreover,
the Puzzle type contains many subtypes, including a large
number that have been observed in our development data
a very small number of times (possibly never before this
particular test set). We did not develop solvers or recognizers
for these rare types; therefore, the Puzzle recognition
recall (0.525) was low. On the other hand, the recognition
precision for the more common types that we did have
solvers for was high (0.977).

Question-answering accuracy of the more common Puzzle
types was evaluated on a different blind set of 10,000
questions in order to obtain a large enough set of questions
for each Special Question type. The accuracy for questions
recognized as Before & After was 39% (29/75), Rhyme Time
30% (15/49), and Anagrams 80% (16/20). The low values
for Before & After and Rhyme Time reflect the fact that

Precision@N is the precision of the system if it answers only the top N% of questions for
which it is most confident in its top answer.

J.M.PRAGER ET AL. 11:9

Table 3 Selected Special Question recognition and question-answering accuracy on 3,571 questions (FITB, Fill-in-

the-Blank.)
Puzzle FITB Multiple-Choice
Number detected 43 142 20
Number in gold standard 80 135 19
Number correct 42 96 13
Recognition precision 0.977 0.676 0.650
Recognition recall 0.525 0.711 0.684
F 0.683 0.693 0.667
Frequency in gold standard 0.023 0.038 0.005
Answering accuracy 0.512 0.803 0.6
Answering Precision(@?70 0.645 0.970 0.571
Table 4 Before & After failure modes and frequencies.
Category of failure Detail Percentage of
questions
Question analysis Parse problem 4%
Incorrect decomposition 11%
Search No recall in one search 19%
No recall in both searches 5%
Algorithm deficiency Question does not cleanly break into 3%
left and right parts
Pre-candidates do not overlap on 2%
word boundaries
Scoring Correct answer not in first place 5%
Other 5%

many operations all have to work successfully to get a correct
answer. A failure analysis of 184 Before & After questions
culled from a sample of 30,000 questions revealed the
failure causes listed in Table 4. This analysis revealed that
there were several different causes, but the most prominent
were as follows:

1. Search failure (24%)—Further analysis revealed that
this was mostly due to the individual SubQuestionSpans
often being underspecified (not enough information to
determine a unique answer) and/or not containing a
focus. We experimented with an approach that took a
high-scoring precandidate from one SubQuestionSpan,
“peeled off” the word on the edge, and added it to the
other search. This gave encouraging results but made
the response time unacceptably slow.

2. Incorrect decomposition (11%)—Rules that rely on
syntax alone (e.g., noun phrase plus relative clause will

11:10 . M. PRAGER ET AL.

split at the relative pronoun) do not seem to be sufficient
to correctly match all cases.

Constraints and puns

To evaluate the impact of the Constrainer component, we
ablated it from the system, retrained all of the models, and
ran this “baseline” system on the test set of 3,571 blind
questions used above. The results are reported in Table 5.
On the entire test set, the Constrainer improves accuracy
by 1.8% (from 0.687 to 0.705) and Precision@70 by

2.4% (from 0.855 to 0.879). If we consider just the 561
questions in the test set where a constraint is detected, the
Constrainer improves accuracy by 11.4% (from 0.636 to
0.750) and Precision@70 by 12.5% (from 0.814 to 0.939).
These are statistically significant via McNemar’s test with a
two-tailed P value less than 0.0001. These results clearly
show that for those questions with a lexical constraint, the
Constrainer provides a substantial performance improvement.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

Table 5 Evaluation of Constrainer on 3,571 question test set.

Baseline (no constrainer) With constrainer

All 3,571 questions
0.705 (+1.8%)
0.879 (+2.4%)

Accuracy 0.687
Precision(@?70 0.855

561 questions where a constraint was detected
Accuracy 0.636 0.750 (+11.4%)

Precision@70 0.814

0.939 (+12.5%)

Table 6 Effect of revealed-answer learning of
constraints in 122 categories in 3,571-question test set.

Property Count (%)
Forwards constrainer passed correct answer 119 (98)
Inferred constrainer passed correct answer 119 (98)
Both constrainers passed correct answer 118 (97)
Forwards constrainer rejected incorrect answer 98 (80)
Inferred constrainer rejected incorrect answer 101 (83)
Either constrainer rejected incorrect answer 114 (93)

This is not surprising as lexical constraints provide both
important clues for and restrictions on the correct answer.

End-to-end system testing on 23,000 questions showed a
2.5% accuracy improvement on the 1% of questions where
the pun feature was active.

Revealed-answer learning

We performed an experiment to measure to what extent

revealed learning could compensate for recognition deficiencies

without hurting performance with overaggressive inference.
For the same blind test set of 3,571 questions, we manually

identified 122 categories with a lexical constraint. For each

such category, we established the following:

e The last question in the category (so that if taken in
top-bottom order, there would be four revealed answers
available).

e The correct answer.

e A manually constructed answer of the type expected by
the question, but not observing the stated constraint.

For each of these questions, we generated the “Forwards”
Constrainer by analysis of the category string, and the
Inferred Constrainer from the revealed answers. We measured
to what extent these constrainers individually and combined

e Passed the correct answer, and
e Failed the wrong answer.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

The results are reported in Table 6. In summary, by
including revealed-answer learning, we lost one correct
answer but rejected 16 wrong answers that the Forwards
Constrainer had passed. Although the individual constrainer
performances at rejecting wrong answers were similar to
each other, there was sufficient lack of overlap that the
combination was significantly more powerful than either
individually.

Related work

This paper focuses on special techniques in the Watson
system for handling question classes highly unique to
Jeopardy!. While to the best of our knowledge, no

other system has been developed in this domain, the
techniques that we have presented in this paper were
designed with component and architectural applicability
to general question answering in mind. We discuss related
techniques for these general-purpose components in this
section.

The question decomposition and synthesis architecture
for solving Before & After and Rhyme Time questions is
similar to earlier work on question decomposition [11]
and Watson’s own decomposition strategies for solving
Final Jeopardy! questions [4]. However, Katz et al. [11]
focused on what we refer to as nested decomposition
questions [12], where a question is decomposed into
two questions that must be solved serially. For example,
“What is the population of the capital of Japan?” can be
answered by first finding out the capital of Japan and then
answering “What is the population of Tokyo?” For
Watson’s puzzle questions, the SubQuestionSpans are
solved in parallel, with the final answers synthesized
from precandidates from each subquestion.

The problem of determining the meaning of a word in
context, narrowly construed, is the domain of Lexical
Semantics [13] or, more broadly, is the concern of much
of natural-language processing. Working with alternative
meanings (i.e., those not consistent with the surface
reading or current context) has been studied much less
in a computational linguistics setting, although it is the
mechanism through which puns operate. Kiddon and Brun [14]

J.M. PRAGER ET AL. 11:11

describe a system that identifies one specific kind of
double entendre based on unigram features. A more general
analysis of the problem of humor recognition is given in
Mihalcea and Strapparava [5]. On the generation side,
Ritchie et al. [15] describe a system that constructs simple
pun-based jokes based on schemas that rely on similar
attributes (synonymy, homophony) to those we use to
detect puns.

In Watson’s treatment of Multiple Choice questions,
possible candidate answers as specified in the category
or question are identified and evaluated using
Watson’s standard suite of answer scorers. The
answer-scoring process causes additional supporting
passages for the candidate to be retrieved, and the degrees
to which these passages support the answer are used as
features to rank the candidate [16]. This process is
analogous to work on answer validation [17, 18] in
verifying which one of the three possible choices is most
likely the answer.

Conclusions

Although Special Questions represent a small fraction of all
Jeopardy! questions, they often occur as entire categories
and represent one sixth of an entire round; therefore, they
must be addressed to obtain the best possible gameplay
performance. Special Questions differ substantially from
Standard Jeopardy! Questions and other question types that
are usually explored in the area of question answering; hence,
they require specially developed algorithms. We presented
the most commonly occurring Jeopardy! Special Question
types and the solutions that we implemented to address these
questions. We also described several general techniques
used to solve these questions. These included question
decomposition and answer synthesis applied to Puzzle

and selected Math questions; Constraints and Puns found in
Standard Questions; and Learning from Revealed Answers,
as applied to category-level question classes and lexical
constraints. We presented evaluations of Special Question
recognition and answering, as well as demonstrated the
impact of lexical constraint processing and learning from
revealed answers.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., Trustees of Princeton University, Hasbro, Inc., or
Wikimedia Foundation in the United States, other countries, or both.

References

1. D. C. Gondek, A. Lally, A. Kalyanpur, J. W. Murdock,
P. Duboue, L. Zhang, Y. Pan, Z. M. Qiu, and C. Welty,
“A framework for merging and ranking of answers in DeepQA,”
IBM J. Res. & Dev., vol. 56, no. 3/4, Paper 14, pp. 14:1-14:12,
May/Jul. 2012.

11:12 ;. M. PRAGER ET AL.

4

A. Lally, J. M. Prager, M. C. McCord, B. K. Boguraev,

S. Patwardhan, J. Fan, P. Fodor, and J. Chu-Carroll, “Question

analysis: How Watson reads a clue,” IBM J. Res. & Dev., vol. 56,

no. 3/4, Paper 2, pp. 2:1-2:14, May/Jul. 2012.

3. J. Chu-Carroll, E. W. Brown, A. Lally, and J. W. Murdock,
“Identifying implicit relationships,” IBM J. Res. & Dev., vol. 56,
no. 3/4, Paper 12, pp. 12:1-12:10, May/Jul. 2012.

4. A. Kalyanpur, S. Patwardhan, B. K. Boguraev, A. Lally, and
J. Chu-Carroll, “Fact-based question decomposition in
DeepQA,” IBM J. Res. & Dev., vol. 56, no. 3/4, Paper 13,
pp. 13:1-13:11, May/Jul. 2012.

5. R. Mihalcea and C. Strapparava, “Learning to laugh
(automatically): Computational models for humor recognition,”
Comput. Intell., vol. 22, no. 2, pp. 126-142, May 2006.

6. J. Chu-Carroll, J. Fan, B. K. Boguraev, D. Carmel, D. Sheinwald,
and C. Welty, “Finding needles in the haystack: Search and
candidate generation,” IBM J. Res. & Dev., vol. 56, no. 3/4,
Paper 6, pp. 6:1-6:12, May/Jul. 2012.

7. G. Miller, “WordNet: A lexical database for english,” Commun.
ACM, vol. 38, no. 11, pp. 39-41, Nov. 1995.

8. J. W. Murdock, A. Kalyanpur, C. Welty, J. Fan, D. A. Ferrucci,
D. C. Gondek, L. Zhang, and H. Kanayama, “Typing candidate
answers using type coercion,” IBM J. Res. & Dev., vol. 56, no. 3/4,
Paper 7, pp. 7:1-7:13, May/Jul. 2012.

9. A. Kalyanpur, B. K. Boguraev, S. Patwardhan, J. W. Murdock,
A. Lally, C. Welty, J. M. Prager, B. Coppola,

A. Fokoue-Nkoutche, L. Zhang, Y. Pan, and Z. M. Qiu,
“Structured data and inference in DeepQA,” IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 10, pp. 10:1-10:14, May/Jul. 2012.

10. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,

R. Cyganiak, and S. Hellmann, “DBpedia—A crystallization
point for the web of data,” J. Web Semantics: Sci., Serv. Agents
World Wide Web, vol. 7, no. 3, pp. 154-165, Sep. 2009.

11. B. Katz, G. Borchardt, and S. Felshin, “Syntactic and semantic
decomposition strategies for question answering from multiple
sources,” in Proc. AAAI Workshop Inference Textual Question
Answering, 2005, pp. 35-41.

12. A. Kalyanpur, S. Patwardhan, B. Boguraev, A. Lally, and
J. Chu-Carroll, “Fact-based question decomposition for candidate
answer re-ranking,” in Proc. 20th ACM Conf. Inform. Knowl.
Manage., 2011, pp. 2045-2048.

13. D. A. Cruse, Lexical Semantics. Cambridge, U.K.: Cambridge
Univ. Press, 1986.

14. C. Kiddon and Y. Brun, “That’s what she said: Double
entendre identification,” in Proc. 49th Annu. Meeting ACL-HLT,
2011, pp. 89-94.

15. G. Ritchie, R. Manurung, H. Pain, A. Waller, R. Black, and
D. O’Mara, “A practical application of computational humour,” in
Proc. 4th Int. Joint Conf. Comput. Creativity, A. Cardoso and
G. A. Wiggins, Eds., 2007, pp. 91-98.

16. J. W. Murdock, J. Fan, A. Lally, H. Shima, and B. K. Boguraev,
“Textual evidence gathering and analysis,” IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 8, pp. 8:1-8:14, May/Jul. 2012.

17. J. Ko, L. Si, E. Nyberg, and T. Mitamura, “Probabilistic models
for answer-ranking in multilingual question-answering,” ACM
Trans. Inf. Syst., vol. 28, no. 3, p. 16, Jun. 2010.

18. B. Magnini, M. Negri, R. Prevete, and H. Tanev, “Is it the right

answer? Exploiting web redundancy for answer validation,” in

Proc. ACL 40th Anniv. Meeting, 2002, pp. 425-432.

Received August 2, 2011; accepted for publication
January 17, 2012

John M. Prager [BM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (jprager@us.ibm.
com). Dr. Prager has been working in technical fields related directly
or indirectly to question answering for most of his professional
career. Most recently, while at the T. J. Watson Research Center, he
has been part of the Watson project, building a system that plays

the Jeopardy! quiz-show game. He has been involved in both the
algorithms area, in particular working on puns and other wordplay,

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

and the strategy area. Previously, he led IBM’s successful entries in
Text REtrieval Conference Question-Answering (TREC-QA) tasks,
an annual evaluation at the National Institute of Standards and
Technology (NIST). Prior to that, he worked in various areas of search,
including language identification, web search, and categorization.

He has contributed components to the IBM Intelligent Miner for
Text product. For a while in the early 1990s, he ran the search service
on www.ibm.com. While at the IBM Cambridge Scientific Center,
Cambridge, MA, he was the project leader of the Real-time Explanation
and Suggestion project, which would provide users with help by
taking natural-language questions and processing them with an
inference engine tied to a large repository of facts and rules about
network-wide resources. He has degrees in mathematics and
computer science from the University of Cambridge and in

artificial intelligence from the University of Massachusetts; his
publications include conference and journal papers, nine patents,

and a book on Alan Turing.

Eric W. Brown IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (ewb@us.ibm.
com). Dr. Brown is a Research Staff Member in the Semantic Analysis
and Integration Department at the T. J. Watson Research Center.

He received the B.S. degree in computer science from the University
of Vermont, Burlington, in 1989 and M.S. and Ph.D. degrees in
computer science from the University of Massachusetts, Amherst, in
1992 and 1996, respectively. He subsequently joined IBM, where

he has worked on information retrieval, text analysis, and question
answering. Since 2007, he has been a technical lead on the Watson
project. Dr. Brown is a member of the Association for Computing
Machinery and Sigma Xi.

Jennifer Chu-Carroll [BM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA (jencc@
us.ibm.com). Dr. Chu-Carroll is a Research Staff Member in the
Semantic Analysis and Integration Department at the T. J. Watson
Research Center. She received the Ph.D. degree in computer science
from the University of Delaware in 1996. Prior to joining IBM in 2001,
she spent 5 years as a Member of Technical Staff at Lucent
Technologies Bell Laboratories. Dr. Chu-Carroll’s research interests
are in the area of natural-language processing, more specifically in
question-answering and dialogue systems. Dr. Chu-Carroll serves on
numerous technical committees, including as program committee
co-chair of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies

(NAACL HLT) 2006 and as general chair of NAACL HLT 2012.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 11 MAY/JULY 2012

J.M.PRAGER ET AL. 11:13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

