
Making Watson fast E. A. Epstein
M. I. Schor
B. S. Iyer
A. Lally

E. W. Brown
J. Cwiklik

IBM Watsoni is a system created to demonstrate DeepQA
technology by competing against human champions in a
question-answering game designed for people. The DeepQA
architecture was designed to be massively parallel, with an
expectation that low latency response times could be achieved by
doing parallel computation on many computers. This paper describes
how a large set of deep natural-language processing programs
were integrated into a single application, scaled out across
thousands of central processing unit cores, and optimized to run
fast enough to compete in live Jeopardy!i games.

Introduction
To successfully compete in the question-answering (QA)
game Jeopardy!**, IBM Watson* had to be as fast as the
best human champions at answering Jeopardy! clues. For
IBM Watson to determine its answer and an accurate
confidence in time to push the buzzer first, it had to complete
a complex computation in the few seconds it takes the host
to read each clue. The research team anticipated that parallel
processing would be critical to scaling Watson out to
reduce latency and, for this reason among others, designed
an Bembarrassingly parallel[logical architecture with
fine-grained units of analysis. For example, a deep
evidence-scoring component [1] in DeepQA analyzes
a single text passage at a time and provides a score
indicating the strength of the evidence for each candidate
answer in the passage. This approach sharply contrasts
with earlier approaches (e.g., [2, 3]), in which the unit of
analysis is an entire set of passages, and the task for
components of this sort is reranking. By breaking the
subtasks of QA down into very small units such as a single
passage, the DeepQA architecture facilitates a particularly
high level of parallelization.
Unstructured Information Management Architecture

(UIMA) was chosen as the integrating framework for
the large and diverse set of analytic components that
comprise the Watson QA system, with the expectation that
UIMA-AS (Asynchronous Scaleout) would enable scalability
across multiple machines. Beyond those architectural
commitments, development was initially focused exclusively
on accuracy and confidence, and processing speed was

largely ignored barring egregious performance. Only after
making significant progress in QA accuracy and confidence
estimation over a two-year period did we begin work to make
Watson fast.
The initial Watson application typically took 1 to

2 hours to answer a question running with a single processor
core. This paper describes how we scaled Watson to
use thousands of processor cores, working in parallel, to
respond in less than 3 seconds on average. The next
section describes the UIMA implementation of the DeepQA
architecture, which is essential for understanding the
scale-out design. Following that are details on the
scale-out design, including feasibility testing and finding
bottlenecks. The remainder of this paper deals with
effective performance optimizations applied to the
analytics themselves.

UIMA implementation of the
DeepQA architecture
The DeepQA architecture [4] defines, at a logical level,
how the QA task is broken down into separate stages of
processing that can be executed in parallel. In this section,
we show how this architecture was implemented using
Apache UIMA** [5], which is an open-source framework for
assembling multimodal and natural-language processing
(NLP) applications. UIMA also has mechanisms to facilitate
parallel processing.
Implementing an analytic application on UIMA requires

encapsulating analysis code into UIMA annotators,
formalizing all analysis input and output data with respect to
a Type System, organizing the data into work units called
Common Analysis Structures (CASes) that are passed
between annotators, and specifying the flow that each CAS
takes through all possible annotators.

�Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

E. A. EPSTEIN ET AL. 15 : 1IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

0018-8646/12/$5.00 B 2012 IBM

Digital Object Identifier: 10.1147/JRD.2012.2188761

Here is a more formal description of these UIMA concepts.

Type SystemVA declarative data model that defines the
Types (classes) and their Features (properties) used by aUIMA
application. An instantiated Type is called a Feature Structure.
Common Analysis Structure (CAS)VA unit of work in
UIMA that is passed from one component to another.
A CAS encapsulates Feature Structures that are organized
into Views. Each View has a unique Subject of Analysis
(e.g., a text string to be analyzed), the analysis
results (metadata describing the Subject of Analysis),
and indexes to the analysis results.
AnnotatorVAn individual processing component in
UIMA. Receives an input CAS, does analysis of its
contents, and typically modifies it (e.g., adds, deletes,
or modifies Feature Structures).
Flow ControllerVDetermines how CASes move among a
collection of UIMA components.

One approach to data organization for Watson would be to
have a Jeopardy! question (category þ clue) as the Subject

of Analysis with analysis results accumulated in a single
CAS View as it moved through all processing steps.
This approach would not be conducive to computational
parallelism, where input data and results must be exchanged
across many machines, nor would it be helpful to organizing
the many megabytes of results for hundreds of candidate
answers. UIMA offers another concept that can be used to
solve both of these problems:

CAS MultiplierVA type of UIMA annotator that may
create and output new CASes that are considered children
of the input CAS.

Watson uses several levels of CAS Multipliers to create
thousands of child CASes during the processing of a
question. The child CASes are designed to contain just the
data needed for each processing step. Organizing the data
into multiple CASes allows them to be processed
concurrently. Keeping the data in each CAS small
minimizes the overhead of transferring data for processing
on other machines.

Figure 1

DeepQA/UIMA architecture.

15 : 2 E. A. EPSTEIN ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

The following sections detail the UIMA implementation of
Watson. Throughout the following discussion, we refer to
Figure 1.

Component types
Each DeepQA/UIMA component is implemented as a
UIMA annotator and is assigned to one of several logical
component types itemized as follows:

Question analysisVAttempts to understand what the
question is asking and performs the initial analyses
that determine how the question will be processed by
the rest of the system.
Primary searchVRetrieves answer-bearing content.
Search result processingVPerforms NLP analysis on
a text search result (either a primary search result or
supporting evidence search result).
Candidate answer generationVExtracts candidate
answers from that content.
Context-independent answer scoringVScores candidate
answers along many dimensions, such as geospatial
similarity.
Soft filteringVRuns after candidate answer scoring to
select the most promising answers, roughly the top 20%,
for further analysis.
Supporting evidence searchVGathers and evaluates
additional supporting evidence for the most promising
candidate answers.
Context-dependent answer scoringVScores the additional
evidence retrieved for selected candidate answers.
Final merging and rankingVCombines all of the evidence
for each candidate answer, merges answers as needed,
assigns ranks, and computes confidence scores.

Type System
In any UIMA application, the basis for communication
between the different components is the shared Type System.
There are two kinds of types in the DeepQA/UIMA type
system: general-purpose NLP types, which are used to
represent a linguistic analysis of the question or of a
text passage, and DeepQA-specific types, which define
critical elements of the QA architecture. The
DeepQA-specific part of the Type System includes the
following important types:

SearchVA query that is executed in order to retrieve
content relevant to the question. This includes queries
over text corpora, as well as semistructured or
structured sources. Each query can result in multiple
SearchResults.
SearchResultVA single result produced by executing a
Search. This could be a document, a text passage, or an
entity from a structured knowledge-base. A SearchResult
can contain multiple CandidateAnswers.

CandidateAnswerVA potential answer identified from a
SearchResult.
CandidateAnswerFeatureVA (label, score) pair associated
with a CandidateAnswer. Each CandidateAnswer has
many CandidateAnswerFeatures, which are used by the
Final Merging and Ranking component to select the
best answer.

Flow controller
A UIMA application may provide a flow controller that
dictates how CASes flow through the various components in
the system. Many UIMA applications use a default linear
flow, but in DeepQA, this does not suffice. Instead, the
DeepQA/UIMA Flow Controller is aware of different
Bflavors[of CAS, each of which undergoes a different kind
of processing. Each CAS flavor is essentially a linear flow,
represented by a different colored line in Figure 1. These
CAS flavors and their flows are as follows:

Question CASVInitially contains the raw question.
Processed by question analysis.
PrimarySearch CASVInitially contains question analysis
results. Processed by primary search, which adds a Search
object and SearchResults to the CAS.
PrimarySearchResult CASVInitially contains question
analysis results and one primary SearchResult. Processed
by search result processing, then candidate answer
generation, then context-dependent answer scoring.
CandidateAnswer CASVInitially contains question
analysis results and one CandidateAnswer. Processed by
context-independent answer scoring and soft filtering,
then (if filter is passed) supporting evidence retrieval.
SupportingEvidence CASVInitially contains question
analysis results, one CandidateAnswer, and one
SearchResult. Processed by search result processing and
context-dependent answer scoring.

All CASes are ultimately delivered to the Final Merging
and Ranking component, which collects information from
them as they arrive and produces the final answers with
confidence scores.

CAS Multipliers
CAS Multipliers transition between CAS flavors. For
example, the BCandidate answer CM[in Figure 1 takes
Primary Search Result CASes as input and produces
Candidate Answer CASes. To do this, it examines the
annotations made by candidate generation (CG) components.
For each CandidateAnswer that was annotated, a new
Candidate Answer CAS will be produced.
In the Watson application, every CAS is given a unique

name consisting of the question identifier (ID), the type
of CAS, the instance number for this child, and its entire
parent history. For example: 508295_search002_

E. A. EPSTEIN ET AL. 15 : 3IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

hit013_candidate020 represents the 20th candidate
answer for question 508295, which was found in the 13th
search hit of the second primary search.
This organization of analysis results clearly identified the

computational history for every analysis step and often
allowed problem solving by inspection. For deeper
understanding, the analysis at any point in the processing
of a question could be recreated by giving the desired input
CAS to a specified analytic component. This organization
of data into separate CASes is a key enabler for the massive
parallelism required by DeepQA.

Scale-out architectures
Two different scale-out systems were used during Watson’s
development. The development system was optimized for
throughput, scaling out computation during DeepQA
algorithm development in order to run many experiments,
each consisting of hundreds or thousands of questions.
The production system was optimized for low latency in order
to answer a single question in the shortest possible time.

Development system
The Watson application is composed of more than
100 different analytic components, about 1 million lines of
Java** and C++ code. Algorithm development was focused
on optimizing accuracy, and experiments required the
results from thousands of test questions in order to be
statistically significant. Researchers focused entirely on
improving accuracy and confidence measures.
Algorithmic flexibility and the ability to run many

experiments were of key importance during algorithmic
development. Algorithmic flexibility meant easily evaluating
the addition of new corpora or the addition of new analytics
at any processing stage. To support experimentation,
overall question processing throughput was more important
than the latency for individual questions. To these ends,
the analysis was broken up and run in pieces, saving
intermediate results that could be reused effectively.
The core UIMA framework allows components to be

easily combined as Bdelegates[into an aggregate analysis
engine. Aggregates representing the entire application or any
subset of components could be assembled quickly. Individual
components and small aggregates were debugged on user
workstations. Larger aggregates or components with large
resource requirements were debugged on larger Bworker[
machines with 32 GB of RAM. After the aggregate was
debugged, we scaled out for throughput by deploying
multiple instances of the aggregate on each of many worker
machines, each instance working on a different question at
the same time.

Production system
The interactive game-playing configuration was dubbed
the production system. Here, algorithmic flexibility was

secondary to QA latency. For example, reorganizing the
passage search subsystem for fast query times trumped
the ability to easily change corpora. Scale-out granularity
changed from replicating the full analysis pipeline as in the
development system to replicating individual components
such as Candidate Generation (CG) in order to derive all
candidate answers for 7one question in parallel.
However, even as work began to create a scaled out

version of Watson, it was clear that algorithmic development
would have to continue right up to the final game in order to
meet the necessary QA accuracy. Therefore, it was critical
that the time and effort to migrate new development code
into the low latency production environment be as small
as possible.

Feasibility testing of UIMA-AS for Watson
UIMA-AS [6] is a general solution for scaling out UIMA
components. The key concept of UIMA-AS is to scale out
a UIMA aggregate analysis engine across a set of CPUs,
on one or more machines, without requiring any changes to
existing component code or descriptors. UIMA-AS adds to
UIMA a new Bdeployment descriptor[that specifies how
each delegate is to be deployed. For example, an annotator
could be replicated and run in separate threads in the same
process as other annotators, or it could be replicated as
separate processes running on different machines. The
UIMA-AS framework manages the multithreading and
interprocess communication.
Consistent with the core UIMA paradigm, each processing

step has a client sending a CAS to a UIMA component and
receiving back the modified CAS. In an aggregate analysis
engine, the client is the aggregate controller (part of the
UIMA framework), and the delegates are the UIMA
components. For delegates colocated in the same process as
the aggregate controller, there is no overhead for delivering a
CAS; when delegates are deployed as separate processes,
each CAS is serialized to and from the delegate. UIMA-AS
uses the JMS (Java Message Service) standard for
interprocess communication.
UIMA-AS had the right properties as far as sharing

components between development and production systems,
but we needed to know if the framework would be able to
scale out across hundreds and possibly thousands of CPU
cores with the efficiency needed to finish the computation in
3 seconds or less. To test this, we simulated a production
system with dummy analytics but real data flow. In essence,
the only code running was the UIMA framework, putting
data into CASes and transporting CASes between processes
deployed across a cluster of machines.
The dummy analytics created the expected number of child

CASes, and the Bcomputation[in each component simply
added to the input CAS the expected number of feature
structures with actual analytic results. The number of
instances of each component was determined by the

15 : 4 E. A. EPSTEIN ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

typical number of pieces of work that the component would
receive for a question. For example, a total of 80 primary
search hits are typically returned from all primary search
components; hence, 80 instances of CG were deployed,
i.e., eight per process on each of ten different eight-core
machines. This allows all 80 search hits to be processed in
parallel, assuming that the UIMA-AS framework delivers
the data fast enough.
The feasibility test deployed a total of 110 multithreaded

processes on 110 eight-core machines. When this test took
longer than 3 seconds, it was quickly apparent that
UIMA-AS needed to be improved. Detailed measurements
showed that virtually all of the time was only in two places:
CAS serialization and network communication.
CAS serialization time was first reduced by having

services return only the parts of the CAS that were changed.
UIMA calls this delta CAS serialization. Further reductions
came from using UIMA’s more efficient, but less flexible,
binary CAS serialization method. Serialization time was also
reduced by serializing CASes in multiple threads. The default
UIMA-AS framework uses a single thread to deserialize
CASes returned from a remote component. By optionally
specifying replicated reply-queue listeners, this processing
bottleneck is avoided.

A final serialization improvement from the feasibility work
was at the application level. The results of question analysis,
kept in a CAS Bquestion[view, are needed by all components
and, hence, were being copied into every child CAS and
serialized out on every remote processing step. To avoid this,
the Question View is now broadcast to all remote UIMA-AS
processes in single operation, using the UIMA serialization
mechanism along with the JMS ability to broadcast a single
message to many consumers. This substantially reduced the
content of all CASes sent to remote processes.
After these changes, the feasibility test ran in less than

1 second, with no measurable CPU time in any component.
That is, UIMA-AS introduced negligible CPU overhead, and
the remaining time was due to network communications,
which turned out to be insignificant in the presence of the
actual analytic computations.

Production system deployment
Figure 2 shows the final production system used for the
Watson Jeopardy! game-playing system. In total, there are
400 processes deployed across 72 IBM POWER*
750 machines. About half were large-memory Java
processes, and the other half were small-memory Indri [7]
Distributed Search Daemons. All UIMA-AS services

Figure 2

Major components in the Jeopardy! system.

E. A. EPSTEIN ET AL. 15 : 5IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

communicated with each other via JMS. Primary and
Supporting Evidence searches have Indri clients directly
connecting to the search daemons. Most of the UIMA-AS
components accessed content servers, PRISMATIC servers,
or both (these servers described below).
Figure 3 tracks CAS flow through the cluster for a typical

question. All primary search components started immediately
following question analysis. As each primary search
completed, primary search hit CASes arrived at CG; in
this example, the longest primary search took 1.2 seconds.
After CG, the candidate answer CASes began arriving at
context-independent scoring and on through the rest of
the pipeline.

Finding bottlenecks in Watson
In the course of processing a single question in the fully
scaled out version of Watson, an average of 1,600 CASes
are serialized out and back among UIMA-AS processes.
Most of the UIMA-AS processes contain dozens of
individual UIMA annotators, replicated in multiple threads.
The entire system runs asynchronously. An early problem
was finding an effective approach to identifying timing
bottlenecks.
The first approach was to develop a generic tool that

periodically (default interval is 1 second) captures a number
of performance statistics for each delegate in a UIMA-AS
process. Instantaneous statistics include input and reply

queue depths for delegates and the number of free CASes
available to each CAS multiplier (a fixed number of CASes is
the main throttling mechanism used by UIMA-AS). Interval
statistics include the number of CASes delivered
to and the CPU time used by each delegate. This monitor,
now part of the UIMA-AS run time package, was useful early
in the scale-out effort, finding the serialization-related
bottlenecks in the simulator.
The second and more essential approach was to integrate

timing measurements into the Watson application code. A
small amount of code added to the custom flow controller
component captured statistics for the main components
described in the BComponent types[section. For each
component, the number of CASes, along with their average
and maximum durations, was logged.
With just these few numbers, any timing outliers could

be isolated quickly. Questions with poor timing were
rerun, and the CASes that were sent to the problem
component were captured. With this CAS data as input,
the component was run in a single-threaded UIMA
application in order to see more detailed timing. Commonly,
it was only one or a small number of CASes that exposed
the problem.
Table 1 shows times for two answers: fast path and full

path. The fast-path answer, which is derived without
supporting evidence, is computed in order to give Watson
a chance to buzz in on the shortest clues.

Figure 3

CAS arrival frequency at different components. Arrival time delays from one component to the next are indicative of processing duration. For example,
primary searches all start at the same time but end from 0.2 to 1.3 seconds later.

15 : 6 E. A. EPSTEIN ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

Figure 4 shows QA latency over �2,000 test questions.
The top histogram was for the first live end-to-end system,
after six months of work. The bottom system used corpus
preprocessing (see below), added a number of new analytics,
doubled the input corpus size, and used more than twice
the hardware resources.

Getting everything into RAM
The speed requirements for Watson compelled the avoidance
of disk I/O delays while running; hence, our design point
is to put all the data we need to answer a question into RAM.
Our initial production system hardware resources primarily

consisted of machines with 32 GB of memory. This may
sound like a large amount of memory, but the Watson
application had many resources consisting of huge tables
of information that individually exceeded these sizes.
The most important techniques we used to reduce
memory requirements and deal with side effects of
keeping large amounts of data in the Java heap are
described below.
Reduce size of referencesVJava comes in two types: one

running in a 32-bit address space, and using 4 bytes
for references (pointers), and one running in a 64-bit
address space, and using larger reference pointers. A 32-bit
address space is normally limited to 4 GB (4 GB ¼ 2
to the 32nd power). Many 64-bit Java implementations
support a special option that allows the Java to address up
to 32 GB (e.g., eight times larger than the 32-bit Java)

with references that take only 4 bytes; they do this typically
by shifting the references left by 3 to get an offset into
the heap. Running with this option can greatly reduce
the footprint of applications that have lots of interobject
references.
Shrinking Java ObjectsVWe used a measurement-driven

approach, looking for where we could get the most leverage,
and found many opportunities. In doing this work, we
considered the cost to get data from memory through the
various cache levels into the CPU core relative to the time it
took to perform operations on the data once it was fetched.
This led to designs where we would encode things within an
Bint[and use bit operations (masking and shifting) to extract
the parts, more or less for Bfree[in terms of performance.
Eliminating Java per-object overheadVOne item that

turned up early was the overhead per Java object. We had
many data structures where the Bnatural[implementation
was a Java object, and the number of these objects was
in the multiple-millions. Depending on the object and the
Java implementation, there is an overhead per object,
typically 16 or more bytes per object.
To avoid this overhead, we store multiples of these objects

inside one containing array. If the objects are arrays of things,
we store these inside one big array, together with their
lengths. The references we call Bhandles[, are then direct
indexes into this one big array.
For arrays of arrays of Bint[s, instead of the obvious

implementation int[][], we store these in one int[]
array, each subarray along with its length. When more
efficient, we store the lengths in other arrays (e.g., byte
arrays). This could happen, if, for instance, you know the
length of the subarrays will always be under 256; then
the lengths can be stored in a separate byte array.
Storing stringsVWatson uses many strings. Storing these

strings in the standard Java Bchar[format takes 2 bytes per
string. Since the vast majority of our data was in plain
ASCII, we took the approach of storing the data in
UTF-8 encoded form, which averaged close to 1 byte
per character.
Watson usually Binterns[strings to share string storage

space for identical strings and returns an Bint[handle
representing the string; it does this by storing the
UTF-8 version of the string in a special hash table, optimized
for space saving (see next section).
Special hash tablesVWatson makes extensive use of

lookup tables and uses HashMaps for this. Watson’s use
of these follows a pattern of loading the table at start time
and then looking things up in the table while running.
We exploit this characteristic (that the table is Bread-only[
after loading) to do several space (and speed) optimizations.
The result is tables that take only 10% to 15% of the space
needed for normal HashMaps.
The read-only aspect of these tables is used when

implementing storage for the bucket chains for collisions. For

Table 1 Performance over 122 questions.
(CDS: Context-Dependent Scoring; CIS:
Context-Independent Scoring; FM: Final Merger;
SER: Supporting Evidence Retrieval.)

E. A. EPSTEIN ET AL. 15 : 7IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

each hash location in the hash table, there is a bucket-chain,
that is, a list of items, all of which share the same hash
code; each entry in the chain is typically a key and its
associated value. Rather than use the conventional
implementation of a linked-list of entry items, we use an
(usually primitive) array implementation. This is feasible
because the array is fixed (because the table is read-only).
Furthermore, the per-object overhead of these arrays is
eliminated using the above approach of storing multiple
arrays in one Java object. For HashMaps used for interning,
since the key and value are the same, we eliminate storing
both of these.
For HashMaps where the value is a set of primitives,

and the key and the individual values can be coerced into
similar kind of primitives, we build special versions of
space-saving Maps where the key and value(s) are stored
together as items in the bucket chain. Each collapsing of this
kind saves two references and two object overheads and
potentially speeds up access because of the locality of the
subitems to each other.

Storing the characters in 1 byte versus 2 accounts for only
a small portion of the space savings because the space for
character data is a small percentage of the total HashMap
space; the rest is from the optimized HashMap design and
eliminating Java object overheads. For example, we ran
one test using random strings of length between 1 and 10,
with an average length of 5.5. For the space-optimized
version, we saw that the character storage (at 1 byte per
character) took up 46% of the space; for the standard
HashMap approach, the character storage (even at 2 bytes
per character) took up only 6% of the space used.
Serializing/deserializing very large space-optimized

objectsVWe balanced the need for fast load time and
some amount of data compression when we designed
serialization for these custom structures. General
compression utilities were too slow; hence, we did
variable-length encoding of integers to achieve some
compression of the disk storage needed (which was often
in the multigigabyte range). Use of NIO (New I/O) and
memory-mapped I/O was very effective in reducing the

Figure 4

Latency improvement from first end-to-end application.

15 : 8 E. A. EPSTEIN ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

loading time, sometimes from half an hour down to a
couple of minutes.
Sesame RDF triple store improvements to in-memory

versionVWatson often makes use of a large amount of
data stored in RDF (Resource Description Framework)
triple formats. Starting with the in-memory Sesame [8]
implementation, we were able to shrink the space used for
this to approximately one-half the size by removing features
not needed such as run time updates and using some of
the space-saving techniques above. Using NIO and a custom
external representation sped up loading by a factor of �20.
Dynamically adjusting underlying object representationV

One use case involved storing millions of integer sets, and
performing various operations on them, including doing
set intersection.
The distribution of the sizes of these sets followed the

distribution frequency of the use of particular words in
particular contexts. Hence, for a vast number of these, the
sizes were very small, but for some significant number of
these, the size was quite large, in the 10,000 and up range.
To accommodate this usage, we built a special integer

set capability that stored sets as a sorted int[] for the
smaller sizes, and as a special optimized hash map over ints
(using the above techniques) for larger sizes, with the
representation being automatically converted if the set grew
above a threshold. Set intersection operations used different
algorithms, depending on the type of arguments. In our
use cases, the sets were constructed at load/setup time, once,
and then repeatedly referenced, without being further
updated; therefore, the cost to convert from the int[]
representation to the other form happened only infrequently,
and was insignificant.
Java garbage collection (GC) with large heapsVLarge

heap sizes present particular garbage collection issues for
real-time systems: long pauses of the application during
full GC events, often over a minute. These are not
acceptable in a game-playing situation. GC performance
can be optimized by adjusting the sizes of the old generation
(which stores long-lived objects) and the new generation
(which stores recently created objects).
The old generation clearly must be big enough to store

Watson’s Bpermanent[data resources such as the read-only
data structures described in the previous section. During
the processing of a question, many temporary objects are
created that pertain only to that question, and we would like
these to exist only in the new generation and not Bleak[
to the old generation where they would accumulate over
time. This is important because if the old generation becomes
full, the JVM** (Java Virtual Machine) completely blocks
the application while performing a full GC.
There are two competing objectives for the sizing of the

generations. A larger new generation prevents the temporary
objects from leaking into the old generation and eventually
causing a full GC. On the other hand, the larger the new

generation, the longer the pauses for Bminor[GCs within the
new generation. We found that these minor collections could
take hundreds of milliseconds, which is still unacceptable
when competing against champion-level players.
Our solution for the large heap Java processes was to take

advantage of the fact that Watson only needed to play one or
two Jeopardy! games at a time, after which there was enough
idle time to do a full GC. Therefore, we set the new
generation size to be small enough that the minor collection
time was very short, although a small amount of leakage
to the old generation did occur. Between games, we forced
a full GC event, ensuring that a full GC would not occur
in the middle of a game.

Speeding up Indri Passage search
Key Watson primary search components for finding
candidate answers use Indri Passage search to find the most
relevant passages (one or two sentences of text) out of the
Watson corpus that are most relevant. Using a single CPU
to search the Watson corpus could easily take 100 seconds
to complete.
Indri Passage search is also used to find additional

evidence supporting the most promising candidate answers.
Supporting evidence searches are an order of magnitude
faster because they include the candidate answer as a
required term in the query, which drastically reduces the
number of passages that need to be considered by Indri.
However, since there are many promising candidate answers
per question, overall, these searches are even more
computationally intensive.
Indri works by creating inverted indexes from the raw

text corpus as a preprocessing step and then using these
indexes to retrieve and score passages within documents
at run time. Passage queries make extensive use of the Indri
term proximity operators that require accessing position
information in the index during query processing. An Indri
search index is roughly the same size as the original corpus.
To achieve the required high-speed search query

performance in DeepQA, the 50-GB corpus of 6.8 million
documents was divided into 79 collections of approximately
100,000 documents and each indexed as a separate Bchunk.[
A bank of 79 Indri search daemons, each hosting one
chunk and running on eight CPU cores, is distributed across
the cluster. Indexes are hosted in RAM by way of file system
buffers. To handle the many supporting evidence queries
occurring in parallel, we deployed two independent banks of
search daemons. Maximum throughput was achieved with
16 clients using each bank; hence, the production system
could run up to 32 passage queries at the same time.
The latency of distributed search is only as good as the

search time of the slowest chunk. It is critical that the chunks
are balanced not only in terms of index size and number
of documents but also in terms of frequency distribution.
Since some DeepQA corpora have a distinct vocabulary

E. A. EPSTEIN ET AL. 15 : 9IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

(e.g., movie databases use terms such as Bactor[and
Bplayed[more frequently than other corpora), we spread
the documents from each corpus evenly across all the chunks.
Furthermore, it is critical to avoid searching on Bstop-words[
(very common terms such as Band[or Bthe[). Because
they are useful as part of multiword phrase queries,
stop-words were not removed at index time but, instead, were
eliminated from the query. To determine which terms to
remove, we systematically measured the impact on query
speed of the most frequently occurring terms and bigrams
and constructed a list of those that were unacceptably slow.
Originally, we used Java code on top of Indri to rerank the

passages (giving more weight to passages that cover more
of the query terms rather than repeat a single query term
multiple times) and to expand the passages to sentence
boundaries. We were able to increase query speed by pushing
both of these operations into Indri. The reranking was
implemented by using Indri’s capability of plugging in
a custom scoring function, and the sentence boundary
expansion by precomputing the sentence boundaries over
the entire corpus, indexing them, and extending Indri to
return them.
Finally, once the search is complete, the passage text

and metadata needed to be retrieved from the Indri index,
and we observed that in the distributed search environment,
the time to access this data can take longer than the passage
search itself. Performance was limited by both network
and JNI (Java Native Interface) serialization overhead.
Instead, metadata lookup is implemented using the highly
optimized Java HashMap described earlier, and passage text
is retrieved from the content server described below.

Corpora preprocessing and custom
content services
In order to use passage hits, Watson does a deep NLP
analysis of the passage text [9]. This analysis includes
semantic and structural parses, finding and resolving
coreferences, identifying named-entities, among others.
After eliminating computation bottlenecks in all other
components, passage analysis constituted over half of the
remaining CPU utilization.
Given that Watson was mandated to be a closed system,

i.e., all of its knowledge self-contained, it made sense to
move the deep NLP work from run time to a preprocessing
stage. This section details the preprocessing effort and the
mechanism for retrieving this data at run time.

Retrieval process for preprocessed data
The preprocessed data was �5 times bigger than the raw text
corpus. Together with the text, this required approximately
300 GB, much more than could fit in any of our 32-GB RAM
machines. We took the approach of building a custom
Bcontent server[for this data and allocated a set of
14 machines that would each hold a portion.

With 14 machines, each one had to hold approximately
20 GB of data. The machines are connected over the network
to hundreds of clients that request specific portions of
documents, using standard TCP/IP socket protocols. The
server code uses Java NIO in nonblocking mode to support
multiple connections operating at once.
In Watson, each document has a unique document

identifier, an integer, which is sequential within each corpus.
We use this document identifier, plus a range of one or
more sentences, as the Bkey[when looking up data in the
content servers. The content is distributed round-robin by
document id among the content server machines; the client
code does the trivial computation to figure out which server
to ask for a particular document. It then sends a TCP/IP
request along an earlier established socket to the content
server, which then uses the document id plus the range of
sentences to index into arrays to find the data to send back.
The data is stored in these arrays in exactly the form

needed to send out on the wire; hence, there is no
Bserialization[cost; a Java NIO nonblocking chained socket
write operation is used to send the length plus the data in
one request.
The same client-server implementation used by the content

server for retrieving preprocessed corpora was also used for
accessing PRISMATIC data [10].

Preprocessing the corpora
Prior to competing, Watson Breads[the corpora and sends it
through the preprocessing UIMA pipeline. The preprocessing
occurs prior to running the system. It can take many days
of computing running on 100’s of CPUs to process all of
the corpora. This process also does the computation of
sentence boundaries that are needed by the search
indexing processes.
To scale out the processing across all of the documents

in the corpora, we employed Apache Hadoop** [11].
We installed Hadoop on approximately 50 machines, each
having eight cores, and 16 GB of RAM shared among
the eight cores. The data was copied to HDFS (Hadoop
Distributed File System), where it was replicated and stored
over all machines. This allowed the machines to often
have their data locally available on the same machine.
Hadoop supports a Map/Sort/Reduce model. We used the

Map step to run a UIMA pipeline, with the unit of work
being one document. At the end of the UIMA pipeline,
we had an extraction step that created and serialized out a
Java object representing the results of all the annotations that
the pipeline created. The Sort phase arranged the items for
each reducer sorted by corpus and then by unique document
identifier. The Reduce phase used one reducer for each
target content server machine and stored the data in a
semicompressed and easily loadable format into a disk file,
one per corpus. These files were then copied to the content
server’s local disk and used to initialize each content server.

15 : 10 E. A. EPSTEIN ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

The normal way Hadoop expects to scale up within a
machine having multiple cores is to replicate the mappers;
thus, for an eight-core machine, you might expect to run
eight mappers. However, Hadoop implements this by
running eight JVMs, one per mapper. In the case of our
UIMA annotations, the footprint of our annotators was
approaching the size of the physical memory on the
machines; hence, running eight of them would not work;
the machine would be constantly Bswapping[as the working
set size would greatly exceed the physical memory. Since
our annotators are implemented to share the large resources
within a JVM, we implemented a new Hadoop Map Runner
that would instantiate and run multiple instances of the
same UIMA pipeline within one JVM. This achieved near
100% CPU utilization.

Conclusion
The Watson QA application, which is based on the inherently
parallel DeepQA architecture, effectively scales out across
many machines. An average latency under 3 seconds was
achieved using 2,300 CPU cores working together to answer
each question. UIMA was effective for integrating over
100 different analytic components into a single application
and facilitating a flexible development environment. Using
UIMA-AS, the same components were deployed without any
changes across 71 machines, each having 32 CPU cores,
with insignificant scale-out overhead. UIMA CAS
Multipliers were key for both organizing analysis results and
achieving parallelism. CAS Views, another UIMA data
organization facility, also proved useful in eliminating
scale-out overhead. The major challenge to making Watson
fast was optimizing the analytics themselves. There was
no Bsilver bullet[to making the analytics faster; multiple
approaches were needed, and the most important of which
are described in this paper: computational parallelism,
eliminating disk I/O by loading large data sets into RAM,
moving analysis work from run time to preprocessing,
and careful tuning of passage search. Finally, building the
right performance measurements into the application was
essential to driving the optimization work.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., Apache Software Foundation, or Sun Microsystems
in the United States, other countries, or both.

References
1. J. W. Murdock, J. Fan, A. Lally, H. Shima, and B. K. Boguraev,

BTextual evidence gathering and analysis,[IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 8, pp. 8:1–8:14, May/Jul. 2012.

2. J. Chu-Carroll, J. Prager, C. Welty, K. Czuba, and D. Ferrucci,
BAmulti-strategy andmulti-source approach to question answering,[
in Proc. 11th Text Retrieval Conf., 2002, pp. 1–8. [Online].
Available: http://trec.nist.gov/pubs/trec11/papers/ibm.prager.pdf.

3. D. Moldovan, C. Clark, S. Harabagiu, and S. Maiorano, BCOGEX:
A logic prover for question answering,[in Proc. HLT-NAACL,
2003, pp. 87–93.

4. D. A. Ferrucci, BIntroduction to FThis is Watson_,[IBM J. Res. &
Dev., vol. 56, no. 3/4, Paper 1, pp. 1:1–1:15, May/Jul. 2012.

5. Apache UIMA Project. [Online]. Available: http://uima.apache.org
6. Apache UIMA Asynchronous Scaleout. [Online]. Available: http://

uima.apache.org/doc-uimaas-what.html
7. Indri search engine. [Online]. Available: http://www.lemurproject.

org/indri/
8. Sesame framework for processing RDF data. [Online]. Available:

http://www.openRDF.org
9. M. C. McCord, J. W. Murdock, and B. K. Boguraev, BDeep

parsing in Watson,[IBM J. Res. & Dev., vol. 56, no. 3/4, Paper 3,
pp. 3:1–3:15, May/Jul. 2012.

10. J. Fan, A. Kalyanpur, D. C. Gondek, and D. A. Ferrucci,
BAutomatic knowledge extraction from documents,[IBM J. Res.
& Dev., vol. 56, no. 3/4, Paper 5, pp. 5:1–5:10, May/Jul. 2012.

11. Apache Hadoop. [Online]. Available: http://hadoop.apache.org/

Received July 18, 2011; accepted for publication
December 20, 2011

Edward A. Epstein IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (eae@us.ibm.
com). Mr. Epstein is a Software Development Manager in the Computer
Science department at the T. J. Watson Research Center. He received
a B.E.E. degree from Georgia Tech in 1971 and subsequently joined
Technicon Instruments Corp in Tarrytown, New York, where he
worked on the development of the first automated white blood cell
differential system based on flow-through cytochemical analysis. In
1984, he joined the IBM Continuous Speech Recognition Group at the
T. J. Watson Research Center, where he contributed to the creation
of the IBM Tangora System, the world’s first large vocabulary
automatic speech recognition system, and then he led the group
responsible for creating IBM’s ViaVoice* speech recognition engine.
For the past seven years, he has been Manager of the IBM team
performing ongoing development of Apache Unstructured Information
Management Architecture, originally an internal IBM Research project,
which is now Apache UIMA. Most recently, he led the effort to
scale out IBM’s Watson question-answering analytic software over
thousands of compute cores in order to compete against human
Jeopardy! champions.

Marshall I. Schor IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (schor@us.ibm.
com). Mr. Schor is a Senior Technical Staff Member in the Semantic
Analysis and Integration Department at the IBM T. J. Watson Research
Center. He received a B.S. degree in engineering from the California
Institute of Technology in 1968, and he did a special two-week
intensive M.B.A. for technical leaders at the Kellogg School,
Northwestern University, in 1999. He has held many positions within
IBM, including Senior Manager within the Mathematical Sciences
department, where he oversaw the initial research in applying machine
learning approaches to text understanding, and he served for several
years as the IBM Research liaison to the IBM Business Intelligence
Solutions unit. He is currently Chair of the IBM Unstructured
Information Management Architecture Board and a Vice President in
the Apache Software Foundation, where he serves as Chairperson
of the Apache UIMA project. He implemented many of the special
space-saving algorithms used in Watson, as well as the content server,
and set up and ran the Hadoop preprocessing pipelines.

Bhavani S. Iyer IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (bsiyer@us.ibm.
com). Ms. Iyer is a Software Engineer in the Unstructured Information
Management Department at the IBM T. J. Watson Research Center.
She received an M.S. degree in computer science from Pace University
and subsequently joined IBM, where she has worked on developing
database applications and distributed systems. She is a contributor

E. A. EPSTEIN ET AL. 15 : 11IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

and committer to the Apache UIMA project and is the primary
developer of the UIMA C++ framework.

Adam Lally IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (alally@us.ibm.com).
Mr. Lally is a Senior Technical Staff Member at the IBM T. J. Watson
Research Center. He received a B.S. degree in computer science
from Rensselaer Polytechnic Institute in 1998 and an M.S. degree in
computer science from Columbia University in 2006. As a member of
the IBM DeepQA Algorithms Team, he helped develop the Watson
system architecture that gave the machine its speed. He also worked on
the natural-language processing algorithms that enable Watson to
understand questions and categories and gather and assess evidence in
natural language. Before working on Watson, he was the lead software
engineer for the Unstructured Information Management Architecture
project, an open-source platform for creating, integrating, and
deploying unstructured information management solutions.

Eric W. Brown IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (ewb@us.ibm.
com). Dr. Brown is a Research Staff Member in the Semantic Analysis
and Integration Department at the IBM T. J. Watson Research Center.
He received a B.S. degree in computer science from the University
of Vermont in 1989 and M.S. and Ph.D. degrees in computer science
from the University of Massachusetts, Amherst, in 1992 and 1996,
respectively. He subsequently joined IBM, where he has worked on
information retrieval, text analysis, and question answering. Since
2007, he has been a technical lead on the Watson project. He is a
member of the Association for Computing Machinery and Sigma Xi.

Jaroslaw Cwiklik IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (cwiklik@us.ibm.
com). Mr. Cwiklik is a Senior Software Engineer in the Unstructured
Information department at the T. J. Watson Research Center. He
received a B.S. degree in computer science from Albany State
University in 1990. He joined IBM at the T. J. Watson Research Center
in 1997. He is a member of the Systems Team working on the
Watson project. He designed and developed Unstructured Information
Management Architecture (UIMA) AS, the key infrastructure
component for scaling out Watson technology to meet latency
requirements and to allow Watson to scale its analytical computations
across thousands of compute cores. Mr. Cwiklik is an Apache
Open Source Committer for the UIMA project.

15 : 12 E. A. EPSTEIN ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 15 MAY/JULY 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

