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The game of Jeopardy!i features four types of strategic
decision-making: 1) Daily Double wagering; 2) Final Jeopardy!
wagering; 3) selecting the next square when in control of the
board; and 4) deciding whether to attempt to answer, i.e., ‘‘buzz in.’’
Strategies that properly account for the game state and future event
probabilities can yield a huge boost in overall winning chances,
when compared with simple ‘‘rule-of-thumb’’ strategies. In this
paper, we present an approach to developing and testing components
to make said strategy decisions, founded upon development of
reasonably faithful simulation models of the players and the
Jeopardy! game environment. We describe machine learning and
Monte Carlo methods used in simulations to optimize the respective
strategy algorithms. Application of these methods yielded
superhuman game strategies for IBM Watsoni that significantly
enhanced its overall competitive record.

Introduction
Major advances in question-answering (QA) technology
were needed for IBM Watson* to play Jeopardy!** at a
championship level. The game show requires rapid-fire
answers to challenging natural-language questions, broad
general knowledge, high precision, and accurate confidence
estimates. Building a computing system that can answer
Jeopardy! questions at a performance level close to that of a
human required intense work over a four-year period by a
team of two dozen IBM Researchers; this was the primary
focus and main technical achievement of the Watson project.
Having pushed QA to a competitive level with humans in

the Jeopardy! domain, it became important to focus on the
game’s strategic aspects in order to maximize Watson’s
chance of winning. There are four types of strategy
decisions [1]: 1) wagering on a Daily Double (DD);
2) wagering during Final Jeopardy! (FJ); 3) selecting the next
square when in control of the board; and 4) deciding whether
to attempt to answer, i.e., Bbuzz in.[ The most critical
junctures of a game often occur in DDs and the FJ rounds,
where wagering is required. Selecting a judicious amount to
wager, on the basis of one’s confidence and the specific game
situation, can make a substantial difference in a player’s

overall chance to win. In addition, given the importance of
DDs, it follows that a player’s square selection strategy
should result in a high likelihood of finding a DD. Allowing
one’s opponents to find the DDs can lead to devastating
consequences, particularly when playing against Grand
Champions of the caliber of Ken Jennings and
Brad Rutter. Furthermore, a contestant’s optimal buzz-in
strategy can change dramatically in certain endgame
scenarios. For example, a player whose score is just below
half the leader’s score may need to make a Bdesperation
buzz[ on the last question to try to avoid a sure loss.
Conversely, at just above half the leader’s score, the correct
strategy may be to never buzz in.
This paper describes our team’s work in developing a

collection of game-strategy algorithms deployed in Watson’s
live Jeopardy! contests against human contestants. To our
knowledge, this paper presents the first-ever quantitative and
comprehensive approach to the Jeopardy! strategy that is
explicitly based on estimating and optimizing a player’s
probability of winning in any given Jeopardy! game state.
Our methods enable Watson to find DDs faster than humans
and to calculate optimal wagers and buzz-in thresholds to a
degree of precision going well beyond human capabilities
in live gameplay. Watson’s use of these advanced
quantitative game strategies significantly enhanced its overall
competitive record, as detailed in the following.
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The following section first describes our development of a
Jeopardy! simulator, which we use to simulate contests
between Watson and human contestants. Building the
simulator entailed mining historical data on contestant
performance in thousands of previous episodes, to obtain
models of the statistical performance profiles of human
contestants and their tendencies in wagering and square
selection.
We then present four specific methods for designing,

learning, and optimizing Watson’s four strategy modules
over the course of many simulated games. These methods
include the following: 1) DD wagering using a combination
of nonlinear regression with reinforcement learning; 2) FJ
wagering based on a Best Response calculation using
extensive Monte Carlo sampling; 3) square selection based
on live Bayesian inference calculation of the DD location
probabilities; 4) buzz-in thresholds in endgames using a
combination of Approximate Dynamic Programming with
online Monte Carlo trials.

Jeopardy! simulation model
Since we optimize Watson’s strategies over millions of
synthetic matches, it is important that the simulations be
faithful enough to predict outcome statistics of live matches.
Developing such a simulator required significant effort,
particularly in the development of human opponent models,
which is also critically important in the game of poker [2].
Our simulator uses stochastic models of the various events
that can occur at each step of the game, ignoring the language
content of category titles, questions, and answers. These
models are informed by the following.

a) Properties of the game environment (rules of play,
DD placement probabilities, etc.).

b) Performance profiles of human contestants, including
tendencies in wagering and square selection.

c) Performance profiles of Watson, along with Watson’s
actual strategy algorithms.

d) Estimates of relative Bbuzzability[ of Watson versus
humans, i.e., how often a player is able to buzz in first or
Bwin the buzz,[ when all contestants are attempting to
buzz in.

Our primary source of information regarding a) and b) is a
collection of comprehensive historical game data available
on the J! Archive website [3]. We obtained fine-grained
event data from approximately 3,000 past episodes, going
back to the mid-1990s, annotating the order in which
questions were played, right and wrong contestant answers,
DD and FJ wagers, and the DD locations.
We devised three different human models, corresponding

to different levels of opposition in Watson’s matches with
human contestants. The Average Contestant model was fitted
to all game data, except Tournament of Champions data;

this was an appropriate model of Watson’s opponents in
its first series of sparring games against former Jeopardy!
contestants, which took place in late 2009 and early 2010.
The Champion model was designed to represent much
stronger opponents that Watson faced in a second series of
sparring games during Fall 2010: Those contestants had
competed in the Tournament of Champions and had reached
the final or semifinal rounds. We developed this model
using data from the J! Archive list of the 100 best players,
ranked according to number of games won. Finally, for
our exhibition match with Ken Jennings and Brad Rutter,
we devised a Grand Champion model that was informed
by performance metrics of the ten best players.
Since the exhibition match used a multigame format

(first, second, and third place determined by two-game point
totals), we developed specialized DD and FJ wagering
models for Games 1 and 2 of the match, as described at
the end of this section.

Daily Double placement
Our computations of joint row–column frequencies based
on the J! Archive data of Round 1 and Round 2 DD
placement confirmed the well-known observations that DDs
tend to be found in the lower rows (third, fourth, and fifth)
of the board and basically never appear in the top row.
However, we were surprised to discover that some

columns are more likely to contain a DD than others.
For example, DDs are most likely to appear in the first
column and are least likely to appear in the second column.
Additional analytic insights from the data include the
following: 1) The two second-round DDs never appear in the
same column; 2) the row location appears to be set
independently of the column location and independently of
the rows of other DDs within a game; and 3) the Round 2
column-pair statistics are mostly consistent with independent
placement, apart from the constraint in 1). However,
there are a few specific column pair frequencies that exhibit
borderline statistically significant differences from an
independent placement model.
Based on our analysis, the simulator assigns the DD

location in Round 1, and the first DD location in Round 2,
according to the respective row–column frequencies. The
remaining Round 2 DD is assigned a row unconditionally, but
its column is assigned conditioned on the first DD column.

Daily Double accuracy/betting model
We set DD accuracy in the Average Contestant model to
64%, from the mean DD accuracy of all contestants over the
J! Archive regular episode data set. The DD accuracy in
the Champion model rises to 75%, and that in the Grand
Champion model rises to 80.5%.
Bets made by human contestants tend to be round-number

bets such as $1,000 or $2,000 and rarely exceed $5,000.
The main dependencies that we observed are that players in
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the lead tend to bet more conservatively and become
extremely conservative near the end of the game, presumably
to protect their lead going into FJ. These dependencies are
clearly shown in Figure 1, where we plot average bets as
functions of player score and of clues played in the second
round.
While these observed wagering strategies were built into

our Average Contestant model, we surmised (correctly as it
turned out) that much stronger Champion and Grand Champion
players would quickly realize that they need to bet DDs
extremely aggressively when playing against Watson. Thus,
these models employed an aggressive heuristic strategy that
would bet nearly everything, unless a heuristic formula indicated
that the player was close to a mathematically certain win.

Final Jeopardy! accuracy/betting model
Our J! Archive data indicates that average contestants have
approximately 50% chance to answer FJ correctly, whereas
Champions and Grand Champions, respectively, have
approximately 60% and 66% FJ accuracy. Furthermore,
from statistics on the eight possible right/wrong triples,
it is also clear that right/wrong answers are positively
correlated among contestants, with a correlation coefficient
�F � 0:3 providing the best fit to the data. The simulator
implements draws of correlated random binary right/wrong
outcomes by first generating correlated real numbers using a
multivariate normal distribution and then by applying
suitably chosen thresholds to convert to 0 or 1 outcomes at
the desired mean rates [4].
The most important factor in FJ wagering is score

positioning, i.e., whether a player is in first place (BA[),
second place (BB[), or third place (BC[). To develop
stochastic-process models of likely contestant bets, we

first discarded data from Blockout[ games (where the
leader has a guaranteed win), and then examined numerous
scatter plots such as those shown in Figure 2. We see
a high-density line in A’s bets corresponding to the
well-known strategy of betting to cover in the case that B’s
score doubles to 2B. Likewise, there are two high-density
lines in the plot of B’s bets, one where B bets everything
and one where B bets just enough to overtake A. Yet, there
is considerable apparent randomization apart from any
known deterministic wagering principles.
After a thorough examination, we decided to segment the

wagering data for A and B into six groups: We used a
three-way split based on strategic breakpoints in B’s score
relative to A’s score (less than two-thirds, between two-thirds
and three-fourths, and more than three-fourths), plus a
binary split based on whether B has at least double C’s score.
We then devised wagering models for A, B, and C1 that
choose among various types of betting logic, with
probabilities based on observed frequencies in the data
groups. As an example, our model for B in the case
(B � 3

4 A, B � 2C) bets as follows: bet Bbankroll[
(i.e., nearly everything) with 26% probability, Bkeepout C[
(i.e., just below B-2C) with 27% probability, Bovertake A[
(i.e., slightly above A-B) with 15% probability, Btwo-thirds
limit[ (i.e., just below 3B-2A) with 8% probability, and
various types of random bets with the remaining 24%
probability mass.
The betting models described in the following were

designed solely to match human bet distributions, and were

1Curiously enough, we saw no evidence that C’s wagers vary with strategic situation; therefore,
we implemented a single betting model for C covering all six groups.

Figure 1

Average Round 2 DD bets of human contestants in (A) first place, (B) second place, and (C) third place. Left: Bets as a function of player score.
Right: Bets as a function of clues played in round.
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not informed by human FJ win rates. However, we
subsequently verified by a historical replacement technique
that the models track actual human win rates quite closely, as
shown in Table 1. We first measured the empirical win rates
of the A, B, and C roles in 2,092 nonlocked FJ situations
from past episodes. We then took turns recalculating the
win rate of one role after replacing the bets of that role by
the bet distribution of the corresponding model. The models
match the target win rates very well, considering that the
human bets are likely to reflect unobservable confidence
estimates given the FJ category.

Regular question model
Our stochastic-process model of regular questions
generates a random correlated binary triple indicating which
players attempt to buzz in, and a random correlated binary
triple indicating whether the players have a correct answer.
In the case of a contested buzz, a buzz winner is randomly
selected based on the contestants’ relative buzzability
(assumed equal in all-human matches). The model, thus,
has four tunable parameters: mean buzz attempt rate b,

buzz correlation �b, mean precision p, and right/wrong
correlation �p.
We set the four parameter values by fitting to observed

frequencies of the seven possible outcomes for regular
questions, as depicted in Figure 3. The outcome statistics
are derived from J! Archive records of more than 150,000
regular questions. The resulting parameter values were:
b ¼ 0:61, �b ¼ 0:2, p ¼ 0:87, and �p ¼ 0:2. The right/wrong
correlation is noteworthy: although a positive value is
reasonable, given the correlations seen in FJ accuracy, it
might be surprising due to the Btip-off[ effect on rebounds.
When the first player to buzz gives a wrong answer, this
eliminates a plausible candidate and could significantly help
the rebound buzzer to deduce the correct answer. We surmise
that the data may reflect a knowledge correlation of �0.3
combined with a tip-off effect of � �0:1 to produce a net
positive correlation of 0.2.
In the Champion model, there is a substantial increase in

attempt rate ðb ¼ 0:8Þ and a slight increase in precision
ðp ¼ 0:89Þ. In the Grand Champion model, we estimated
further increases in these values, to b ¼ 0:855 and
p ¼ 0:915, respectively. We also developed refined models
where b and p values depended on round and on dollar value;
these refinements make the simulations more accurate but
do not have a meaningful impact on the optimization of
Watson’s strategies.

Square selection model
Most human contestants tend to select in top-to-bottom order
within a given category and to stay within a category rather
than jumping across categories. There is a further weak
tendency to select categories moving left-to-right across the
board. On the basis of these observations and on the likely

Figure 2

Distribution of human Final Jeopardy! bets, normalized by leader score, as a function of the ratio of second-place/first-place scores. Left: bets of
first-place player BA.[ Right: bets of second-place player BB.[

Table 1 Comparison of actual human win rates
with model win rates by historic replacement in 2,092
nonlocked Final Jeopardy! situations from past episodes.
(A: first place; B: second place; C: third place.)
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impact of Watson’s square selection, we developed an
Average Contestant model of square selection that stays in
the current category with 60% probability and otherwise
jumps to a random different category. When choosing within
a category, there is high probability (�90%) of choosing
the topmost available question. By contrast, we model
Champion and Grand Champion square selection as DD
seeking based on the known row statistics of DD placement.
Strong players generally exhibit more DD seeking when
selecting squares, and when playing against Watson, they
quickly adopt overt DD-seeking behavior.

Multigame wagering model
In most Jeopardy! contests, the winner is determined
by performance in a single game. However, the
Watson-Jennings-Rutter match utilized point totals over
two games to determine the first, second, and third places.
This clearly implies that wagering strategies must differ in
Games 1 and 2 of the match, and both need to be different
from single-game wagering.
Since there is very limited multigame match data available

from J! Archive, it would be difficult to model the expected
wagering of Jennings and Rutter in the exhibition purely
from historical data. Fortunately, we were able to make some
educated guesses that considerably simplified the task.
First, we predicted that they would wager DDs very
aggressively in both games, unless they had an
overwhelming lead. This implied that we could continue to
use the aggressive heuristic DD model for single games,
with a revised definition of what constitutes an
Boverwhelming[ match lead. Second, we also expected them
to bet very aggressively in FJ of the first game. This meant
that we could treat Game 1 FJ as if it were a DD situation
and again use the aggressive heuristic model.
The only situation requiring significant modeling effort

was Game 2 FJ. Given limited available match data, only
crude estimates could be assigned of the probabilities of
various betting strategies. However, it is clear from the data

that the wagering of human champions is much more
coherent and logical than the observed wagering in
regular episodes, and champion wagers frequently
satisfy multiple betting constraints. These observations
guided our development of revised betting models for
Game 2 FJ. As an example, in the case where B has
a legal two-thirds bet (suitably defined for matches) and
where B can also keep out C, our model for B bets as
follows: Bbankroll[ bet with 35% probability, bet a small
random amount that satisfies both the two-thirds and the
keepout-C limits with 43% probability, or bet to satisfy the
larger of these two limits with 22% probability.

Optimizing Watson strategies using the
simulation model
The simulator described previously enables us to estimate
Watson’s performance for a given set of candidate strategy
modules by running extensive contests between a simulation
model of Watson and two simulated human opponents.
The Watson stochastic-process models use the same
performance metrics (i.e., average attempt rate, precision,
DD, and FJ accuracy) as in the human models. The parameter
values were estimated from J! Archive test sets and were
updated numerous times as Watson improved over the course
of the project. The Watson model also estimates buzzability,
i.e., its likelihood to win the buzz against humans of various
ability levels. These estimates were initially based on
informal live demo games against IBM Researchers and were
subsequently refined based on Watson’s performance in
the sparring games. We estimated Watson’s buzzability at
~80% against average contestants, 73% against Champions,
and 70% against Grand Champions.
Computation speed is an important factor in designing

strategy modules since wagering, square selection, and
buzz-in decisions need to be made in just a few seconds.
In addition, the strategy was run on Watson’s Bfront-end,[
a single server with just a few cores, since its 3,000-core
Bback-end[ was dedicated to QA computations. As a result,

Figure 3

Frequencies in J! Archive data of seven possible outcomes of regular questions.
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most of Watson’s strategy modules run fast enough
so that hundreds of thousands of simulated games can be
performed in just a few CPU hours. This provides a solid
foundation for evaluating and optimizing the individual
strategy components, which are described in the following.
Some strategy components (endgame buzz threshold and
Game 2 FJ betting) are based on heavyweight Monte Carlo
trials; these are too slow to perform extensive offline
evaluation. Instead, these strategies perform live online
optimization of a single strategy decision in a specific
game state.

Daily Double wagering strategy
We implemented a principled approach to DD betting, based
on estimating Watson’s likelihood of answering the DD
question correctly, and estimating how a given bet will
impact Watson’s overall winning chances if Watson gets the
DD right or wrong. The former estimate is provided by an
Bin-category DD confidence[ model. Based on thousands of
tests on historical categories containing DDs, the model
estimates Watson’s DD accuracy given the number of
previously seen questions in the category that Watson got
right and wrong.
To estimate impact of a bet on winning chances, we follow

[5] in using reinforcement learning [6] to train a game-state
evaluator (GSE) over the course of millions of simulated
Watson-versus-humans games. The GSE consists of a
nonlinear function approximator (specifically, a type of
artificial neural net called a Multilayer Perceptron [7]) that
receives a feature-vector description of the current game state
and outputs an estimate of the probability that each player
will ultimately win the game.

The combination of GSE with in-category confidence
enables us to estimate EðbetÞ, i.e., the Bequity[ (expected
winning chances) of a bet, according to

EðbetÞ ¼ pDD � V ðSW þ bet; . . .Þ
þ ð1� pDDÞ � V ðSW � bet; . . .Þ; (1)

where pDD is the in-category confidence, SW is Watson’s
current score, and V ð Þ is the game-state evaluation after
Watson’s score either increases or decreases by the bet and
the DD has been removed from the board. We can then
obtain an optimal risk-neutral bet by evaluating EðbetÞ for
every legal bet, and selecting the bet with the highest equity.
We additionally modified (1) to incorporate known
techniques in risk analytics; this achieved a significant
reduction in downside risk when getting the DD wrong, at
only a slight cost (less than 0.2% per DD bet) in the expected
win rate.

Illustrative example
Figure 4 illustrates how the DD bet analysis operates, and
how the resulting bet depends on in-category confidence.
The example is taken from one of the sparring games, where
Watson got four consecutive questions right in the first
category at the start of Double Jeopardy! and then found the
first DD in attempting to finish the category. At this point,
Watson’s score was $11,000, and the humans each had
$4,200. Watson’s in-category confidence took its maximum
value of 75%, based on having gotten four out of four correct
answers previously in the category. Watson chose to
wager $6,700, which is a highly aggressive bet by human
standards. (Fortunately, Watson got the DD question right.)

Figure 4

Left: equity estimates getting the DD right (green curve) and wrong (red curve). Right: bet equity curves at five differences in-category confidence
levels, from 45% to 85%. Black dots show how the optimal risk-neutral bet increases with confidence.
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The left figure shows neural net equity estimates for
getting the DD right (green curve) and wrong (red curve) at
various bet amounts. These curves are extremely smooth
with gently decreasing slopes. The right plot shows the
resulting equity-versus-bet curve at Watson’s actual 75%
confidence level (magenta curve), along with four other
curves at different confidence values ranging from 45% to
85%. Black dots on each curve indicate the best risk-neutral
bet, and we can see how the bet steadily increases with
confidence, from $5 at 45%, to approximately $9,300 at
the actual 75%, and finally to the entire $11,000 at a
(hypothetical) confidence of 85%.
We also note the effect of risk mitigation, which reduced

Watson’s actual bet from $9,300 to $6,700. According to
extensive Monte Carlo analysis of this bet, risk mitigation
lowered Watson’s equity by only 0.2% (from 76.6% to
76.4%) but reduced downside risk by more than 10% in the
event that Watson got the DD wrong.

Multigame DD wagering
As mentioned previously, Games 1 and 2 of the exhibition
match required distinct wagering strategies, with both
differing from single-game wagering. We trained separate
neural networks for Games 1 and 2. The Game 2 net was
trained first, using a plausible artificial distribution of
Game 1 final scores.
Having trained the Game 2 neural net, we could then

estimate the expected probabilities of Watson ending the
match in the first, second, or third place, starting from any
combination of Game 1 final scores, by extensive offline
Monte Carlo simulations. We used this to create three lookup
tables, for the cases where Watson ends Game 1 in first,
second, or third place, of Watson match equities at various
Game 1 final score combinations, ranging from (0, 0, 0) to
(72000, 72000, 0) in increments of 6000. (Since adding
or subtracting a constant from all Game 1 scores has no effect
on match equities, we can without loss of generality subtract
a constant so that the lowest Game 1 score is zero.)
Since match equities are extremely smooth over these grid
points, bilinear interpolation provides a fast and highly
accurate evaluation of Game 1 end states. Such lookup tables
then enabled fast training of a Game 1 neural net, using
simulated matches that only played to the end of Game 1,
and then assigned expected match-equity rewards using
the table.
An important new issue that we faced in the exhibition

match was how to assign relative utilities to finishing in the
first, second, and third places. Unlike the sparring games
where our sole objective was to finish first, we extensively
debated the amount of partial credit that IBM would garner
by defeating one of the two greatest Jeopardy! contestants
of all time. Ultimately, we decided to base the match DD
wagering on full credit for first, half credit for second, and
zero credit for a third place finishVsuch an objective places

equal emphasis on finishing first and avoiding finishing
third.

Final Jeopardy! wagering
Our approach to FJ wagering involves computation of a Best
Response strategy [8] (a standard game-theoretic concept)
to the human FJ model presented earlier. We considered
attempting to compute a Nash equilibrium [8] strategy but
decided against it for two reasons. First, because of the
imperfect information in FJ (contestants know their own
confidence given the category title but do not know the
opponents’ confidence), we would in principle need to
compute a Bayes-Nash equilibrium, which entails
considerably more modeling and computational challenges.
Second, it seems far-fetched to assume that Watson’s
opponents would play their part in a Nash equilibrium since
the average contestant has not studied game theory.
Computation of the Best Response proceeds as follows.

First, we consult a BFinal Jeopardy! prior accuracy[
regression model to estimate Watson’s confidence given
the category title. This model was trained on samples of
Watson’s performance in thousands of historical FJ
categories, using NLP-based feature vector representations
of the titles. Second, given Watson’s confidence and the
human accuracy and correlation parameters, we derive
analytic probabilities of the eight possible right or wrong
outcomes. Third, for a given FJ score combination, we draw
on the order of 10,000 Monte Carlo samples of bets from
the human models. Finally, we evaluate the equity of
every legal bet, given the human bets and the right/wrong
outcome probabilities, and select the bet with highest
equity.
After extensive offline analysis, we discovered that the

Best Response output could be expressed in terms of a
fairly simple set of logical betting rules. As this is much
faster than the full Best Response calculation, we deployed
a rule-based encapsulation of the Best Response strategy for
Watson’s sparring game matches. An example betting rule
for B stipulates that

If B has at least two-thirds of A and if B has less
than 2C, check whether 2C-B (the amount to cover
C’s doubled score) is less than or equal to 3B-2A
(the maximum two-thirds bet). If so, then bet 2C-B;
otherwise, bet everything.

For the exhibition match, we devised live Best Response
algorithms for Games 1 and 2 based on Monte Carlo
samples of the match human betting models, and
probabilities of the eight right/wrong outcomes given
Watson’s FJ category confidence. For the first-game FJ,
we cannot evaluate directly from the FJ outcomes since
there is still a second game to play. The evaluation is instead
based on interpolation over the lookup tables discussed
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earlier, denoting Watson’s match equities from various
first-game score combinations.
For Game 2 FJ, we again devoted substantial effort to

interpreting the Best Response output in terms of logical
betting rules. The derived rules mostly bet to guarantee a win
as A if Watson answers correctly.
For wagering as B, the betting rules would only attempt to
finish ahead of A if it did not diminish Watson’s chances of
finishing ahead of C. This naturally emerged from assigning
half-credit for a second place finish in the match utility
function. Finally, for wagering as C, the Best Response
output was too complex to derive human-interpretable rules;
therefore, Watson was prepared to run the live calculation
in this case. As it turned out, all of the above work was
superfluous since Watson had a lockout in Game 2 of the
exhibition match.

Square selection
Selecting a DD can provide an excellent opportunity for a
player to significantly boost his game standing while also
denying that opportunity to the other players. On the other
hand, by gathering information about a category from its
low-value questions, contestants can increase their expected
accuracy for higher value questions in the same category.
We used the simulator to systematically investigate the

relative importance for Watson of the following factors in
square selection: finding the DDs, retaining control of the
board if a DD is not found, and learning the essence of a
category. These studies were performed using Champion and
Grand Champion human models, which featured overt
DD seeking, aggressive DD wagering, and high DD
accuracy. Our results showed that prior to all DDs being
revealed, finding DDs is overwhelmingly the top factor in
Watson’s win rate, and retaining control is second in
importance. Learning the essence of a category appears to
provide an effective strategy only after all DDs have
been found.
These findings led us to deploy an algorithm that selects

squares as follows. First, if there are any unrevealed DDs,
a square i� is selected that maximizes pDDðiÞ þ � � pRCðiÞ,
where pDDðiÞ is the probability that square i contains a DD,
pRCðiÞ is an estimated probability that Watson will retain
control of the board if i does not contain a DD, and � ¼ 0:1
yielded the best win rate. The first term is calculated using
Bayesian inference: we use historic DD frequencies as a
prior, combined with evidence from revealed squares
according to Bayes’ rule, to compute posterior probabilities
for the DD locations. The second probability is estimated by
combining the simulation model of human performance on
regular questions with a model of Watson that adjusts its
attempt rate, precision, and buzzability as a function of the
number of right/wrong answers previously given in the
category. Second, after all DDs in the round have been
found, the algorithm switches to selecting the lowest dollar

value in the category with the greatest potential for learning
about the category: This is based on the number of
unrevealed questions in the category and their total
dollar value.
Relative contributions of the three factors can be seen in

Table 2. We first measured Watson’s win rate against
simulated Grand Champions using a baseline strategy of
always selecting squares in the column with the highest
estimated accuracy in a top-to-bottom order. We then find
an improvement of 6.6% by switching to Bayesian DD
seeking if DDs are available. We then obtain a further
0.3% improvement by using the previously described
learning strategy with no remaining DDs. Finally, we obtain
0.1% gain by including � � pRCðiÞ per above with � ¼ 0:1.

Confidence threshold for attempting to buzz
Watson attempts to buzz in if the confidence in its top-rated
answer exceeds an adjustable threshold value. In most game
states, the threshold is set to a default value that is tuned
to maximize expected earnings. Near the end of the game,
the threshold may vary significantly from this default value.
One special-case policy that we devised for endgames
uses a Blockout-preserving[ calculation. For Round 2
states with no remaining DDs, if Watson has a big lead,
we calculate whether Watson has a guaranteed lockout
by not buzzing on the current square. If so, and if the
lockout is no longer guaranteed if Watson buzzes and is
wrong, we prohibit Watson from buzzing, regardless
of confidence.
In principle, there is an exact optimal buzz-in policy
½B0
�ðc;DÞ;B1

�ðc;DÞ;B2
�ðc;DÞ;B3

�ðc;DÞ� for any game
state with a question in play, given Watson’s confidence c
and the dollar value D of the current question. The policy
is a four-component vector as there are four possible states
in which Watson may buzz: the initial state, the first
rebound where human #1 answered incorrectly, the first
rebound where human #2 answered incorrectly, and the
second rebound where both humans answered incorrectly.
The optimal policy can be calculated using Dynamic
Programming (DP) techniques [9]. This involves writing a

Table 2 Simulation win rates versus Grand
Champions using various square selection strategies.
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recursion relation between the value of a current game state
with K questions remaining before FJ and values of the
possible successor states with K � 1 questions remaining as
follows:

VkðsÞ ¼
Z
�ðcÞ

X5
j¼1

pðDjÞ max
~Bðc;DjÞ

�
X
�

pð�j~B; cÞVk�1ðs0 �;DjÞ
� �

dc; (2)

where �ðcÞ is the probability density of Watson’s
confidence, pðDjÞ denotes the probability that the next
square selected will be in row j with dollar value
Dj ¼ 400 � j, the max operates over Watson’s possible
buzz/no-buzz decisions, pð�jB; cÞ denotes the probability
of various unit score-change combinations �, and s0 denotes
various possible successor states after the Dj square has been
played, and a score change combination � occurred.
Exact DP computation of the optimal buzz-in policy

entails expanding the root state to all possible successor
states, going all the way to FJ states, evaluating the FJ states
by Monte Carlo trials, and then working backwards using (2)
to ultimately compute the optimal buzz policy in the root
state. However, this is generally too slow to use in live play,
where the buzz-in decision must take at most �1 to 2
seconds. We therefore implemented an Approximate DP
calculation in which (2) is only used in the first step to
evaluate VK in terms of VK�1, and the VK�1 values are
then based on plain Monte Carlo trials [10–12]. Due to
slowness of the exact calculation, we were unable to estimate
accuracy of the approximate method for K 9 5. However,
we did verify that Approximate DP usually gave quite good
threshold estimates (within �5% of the exact value) for
K � 5 remaining squares; therefore this was our switchover
point to invoke Approximate DP as deployed in the live
sparring games.
Our buzz-in algorithm easily handles, for example, a

so-called Bdesperation buzz[ on the last question, where
Watson must buzz and answer correctly to avoid being
locked out. From time to time, it also generates spectacular
movements of the buzz threshold that are hard to believe
on first glance but that can be appreciated after detailed
analysis. An example taken from the sparring games is a
last-question situation where Watson has $28,000, the
humans have $13,500 and $12,800, and the question value
is $800. The (initially) surprising result is that the optimal
buzz threshold drops all the way to zero. This is because after
buzzing and answering incorrectly, Watson is no worse off
than after not buzzing. In either case, the human B player
must buzz and answer correctly in order to avoid the
lockout. On the other hand, buzzing and answering
correctly secures the win for Watson; therefore, this is
a risk-free chance to try to buzz and win the game.

Summary of performance evaluation
We have performed extensive analysis to assess the
faithfulness of the simulator in predicting live game results
and to measure the performance benefits of our advanced
strategies, over both simpler baseline strategies as well as
strategies used by humans. Detailed documentation of these
analyses will be presented in a more extensive future
publication. In brief, the simulator matched live results in the
sparring games within sampling error according to every
metric that we examined. These include quantities such as the
following: Watson’s win rate, Watson and human’s lockout
rates, Watson’s rate of leading going into FJ, Watson and
human’s average scores, and Watson’s average board control.
The simulator also accurately predicts the percentage of
DDs found by Watson and the average time it takes to find
the first, second, and third DD in each game.
In comparing each strategy module with a corresponding

baseline heuristic, we obtained the following results: The
improvement due to advanced DD betting was �6.5% more
wins, whereas the square selection improvement ranged up to
7.6%, as we discussed previously. For FJ betting, we
estimate a �3% gain over a heuristic algorithm that always
bets just enough to close out when leading and that bets
everything when trailing. We have no data on heuristic
endgame buzzing, but a conservative guess is that our
Approximate DP buzzing would achieve �0.5% to 1%
greater win rate. The cumulative benefit of these gains
appears to be additive, as the simulator estimates Watson’s
win rate at 50% using all baseline strategies, versus 70%
using all advanced strategies.
Watson’s ability to find DDs more effectively than humans

can be seen from the fact that its rate of finding DDs exceeds
its average board control. This was true not only in
simulation but also in live sparring games, where Watson
found 53.3% of the DDs but only had 50.0% average
board control. We can also show superiority of Watson’s
wagering strategies by analysis of human bets in the J!
Archive data. For example, the historic win rates in
nonlocked FJ are 65.3% as A, 28.2% as B, and 7.5% as C.
Using historic replacement of the recorded human bets with
Watson’s Best Response bets, these win rates increase to
67.0%, 34.4%, and 10.5%, respectively. We have also
performed extensive Monte Carlo analysis of human DD
bets on the last DD of the game. The results show that the
average equity loss of human DD bets is between 3.2%
and 4.2% per bet, which is an order of magnitude worse
than Watson’s loss rate of 0.25% per bet.

Conclusion
We have presented an original quantitative approach to
strategy for playing the television game show Jeopardy!.
Our approach is comprehensive, covering all aspects of game
strategy: wagering, square selection, attempting to buzz-in,
and modifications for multigame tournament matches. A key
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ingredient in this paper was the development of an
original simulation model of the game and its human
contestants.
Apart from numeric metrics showing outperformance of

human strategies, it is plainly evident that our strategy
algorithms achieve a level of quantitative precision and
real-time performance that exceeds human capabilities.
This is particularly true in the cases of DD wagering and
endgame buzzing, where humans simply cannot come close
to matching the precise equity and confidence estimates
and complex decision calculations performed by Watson
in real time. Nor are humans capable of performing live
Bayesian inference calculations of DD location likelihood.
As such, the software that we have developed could prove to
be a valuable teaching tool for prospective contestants. If it
were made widely accessible and reoriented to optimizing
human strategies, this could result in broad improvements
in strategic decision-making as seen on the show. Such
improvements have already occurred in numerous games
such as Chess, Checkers, Othello, and Backgammon, after
the best programs surpassed the top humans, and we expect
Jeopardy! to be no different in this regard. We are
investigating deployment of calculators of DD wagers and
DD location probabilities on J! Archive. This would nicely
complement the existing FJ wager calculator and make our
methods widely accessible for study by prospective
contestants.
Looking beyond the immediate Jeopardy! domain, we also

foresee more general applicability of our high-level approach
to coupling decision analytics to QA analytics, which
consists of building a simulation model of a domain
(including other agents in the domain), simulating short-term
and long-term risks and rewards of QA-based decisions,
and then applying learning, optimization, and risk analytics
techniques to develop effective decision policies. We are
currently investigating applications of this high-level
approach in health care, dynamic pricing, and security
(i.e., counter-terrorism) domains.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., in the United States, other countries, or both.
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