
Superficial Data Analysis – Exploring Millions of Social Stereotypes

Brendan O'Connor and Lukas Biewald
Dolores Labs, Inc. http://doloreslabs.com

Appears in "Beautiful Data", ed. Toby Segaran and Jeff Hammerbacher. 2009 O'Reilly
Media.

Introduction

How do we perceive age, gender, intelligence, and attractiveness? What insight can we
extract from millions of anonymous opinions?

Last year we, with Chris Van Pelt, built the website FaceStat.com, where users can upload
their own photos, as well as look at and judge photos of other people. The site became
surprisingly popular. More than 100,000 brave users have uploaded pictures of themselves,
friends, relatives, enemies, etc., and more than 10 million judgments have been collected
for pre-selected questions such as:

• How old do I look?
• Do you think I look smart?
• Do you think I could win a fight with a medium sized dog?
• Describe me in one word.

We like to call it “multivariate Hot-or-Not.”

Researchers in psychology and sociology have extensively studied stereotypes and how our
appearances influence the way we are perceived. But no one has had access to such a
large pool of data from such a diverse group of people. This data is much messier than a
typical lab experiment, but can volume make up for a lack of control? In fact, real-world
data might be most revealing: someone who thinks they're playing a game could be more
honest than a college sophomore taking a survey in their Psych 101 course.

We love exploring big datasets. Rather than confirm pre-baked hypotheses, we’ll search for
interesting patterns and correlations. We won't try to hide or gloss over the messy outliers
and missing values; instead, we'll show you explicitly the choices we're forced to make. We
will refrain from drawing grand or controversial conclusions about stereotyping and let the
data speak for itself.

Figure SCREENSHOT: Screenshot of the FaceStat judging interface.

Preprocessing the Data

We'll start from the beginning: like many websites, FaceStat runs on an SQL database. The
judgment interface takes user judgments and saves them as a set of (face ID, attribute,
judgment) triples. The first thing we do is extract those 10 million rows from the database.
This gives us a file that looks like:

face_id key value
149777 describe serious
18717 trustworthy 3
140467 attractive 2
149777 describe five-head
...

We're interested in exploring the relationships between different types of perceived
attributes. One interesting question is, "How old do I look?" The very first thing to do is to
look at the responses that people have given. Unix command-line tools make it easy to
quickly see a histogram of responses. The most common responses look like reasonable
ages, but we also see a problem:

Look at $ cat data.tsv |
age judgments' grep "age" |

values cut -f3 |
and count how many times sort |
each value occurs, uniq -c |
and order by this count. sort -nr

Here's the output of this shell pipeline. For each line, the first number is the frequency
count. The second string is the response value -- exactly what the user typed in the web
form in response to the question How old do I look? Most often, they typed in a number,
but there are some issues:

70472 19
70021 22
69387 18
68423 17
...
27 24\r\n
27 17\r\n
23 01
21 16\r\n
...
1 old enough to know better
1 hopefully over 21
1 e
1 ??
...

FaceStat has existed for 8 months and undergone many changes, so data has been
collected under different circumstances. Some weird web browsers seem to add whitespace
control codes \r\n. At some point there was a bug and users slipped in textual responses
and other problematic data. Looking at rare values from the bottom of the sort | uniq -c |
sort -nr histogram is an easy way to reveal data bugs, since they often manifest as
outliers. We have to write some regular expressions that can clean out bad values like this.

It would be tedious to go into detail about all of the sanity checks and data cleanup, but
they are a crucial first step for any data analysis. With any human-generated data set,
there’s bound to be messy outliers. For example, we found one person who figured out a
way to circumvent the randomness in the selection of which face to judge, and labeled one
face “mr. cool” hundreds of times.

Besides cleanup, some critical decisions to make for this particular data set are (1) how to
map from multiple choice responses like “very trustworthy” vs. “not to be trusted” to a
numerical value, and (2) how to aggregate results from multiple people into a single
description of a face. Every face has some 100 judgments among several different
attributes. We’ll simply average the numeric judgments. (Under this paradigm, we ignore
textual judgments; we'll get to those later.) So each face has an average perceived age,
perceived intelligence, etc. Using SQL and Python scripts, we eventually end up with a file
with one row per face. It looks something like:

 male age intelligence attractive political_affiliation
 TRUE 24.26667 NA 2.800000 NA
 TRUE 47.00000 3.400000 2.120000 3.2
 TRUE 29.27273 2.700000 2.083333 1.8
 FALSE 17.63636 3.111111 2.428571 NA

 FALSE 19.58333 NA 2.750000 NA
 TRUE 22.80953 NA 2.250000 NA
 TRUE 29.77778 1.833333 1.900000 NA
 FALSE 18.16667 NA 2.571429 NA
 TRUE 46.60000 3.200000 2.120000 3.4
 TRUE 52.06667 3.000000 2.080000 NA

In all, there are tens of thousands of faces with about 20 different attributes. There are
many missing values: different questions were asked of different people. With those
caveats in mind, we're ready to load the data into a package for more detailed analysis. If
you want to follow along, we’ve made a subset of the data and useful code available at
http://data.doloreslabs.com.

Exploring the Data

There are many great tools for data analysis. Some of the most commonly used are
compared in table COMP.

Table COMP: Comparison of Data Analysis Packages

Name Advantages Disadvantages Open
source?

Typical users

R Library support;
visualization Steep learning curve Yes

Statistics

Matlab Elegant matrix support;
visualization

Expensive; incomplete
statistics support No

Engineering

SciPy/NumPy/
Matplotlib

Python (general-purpose
programming language) Less mature Yes

Engineering

Excel Easy; visual; flexible Large datasets; weak
numeric support No

Business

SAS Large datasets Very baroque; hardest
to learn

No Business

Stata (and
SPSS)

Easy statistical analysis Less programmatic
than R/Matlab/Py

No Science
(bio and social)

We like to use R. It's an open source statistical and visualization programming environment
with a vibrant and growing development community. It’s emerged as a de facto standard
among statisticians. For exploratory data analysis, we prefer it to the other options because of
its graphing libraries, convenient indexing notation, and an amazing array of statistically
sophisticated, community maintained packages. You can read about it and download it at
http://www.r-project.org; also see the references at the end of this chapter.

R provides many of excellent tools for looking at what's in the data. From its interactive
interpreter:

Load the data > data = read.delim("http://data.doloreslabs.com/face_scores.tsv", sep="\t")
and plot. > plot(data)

Given a basic table of records, R's default plotting action is to give us a scatterplot matrix of

every pair of variables. [Figure BADSCATS.] One thing that jumps out is that the age
correlations look funny -- the right-most column and bottom-most row.

Figure BADSCATS: Initial scatterplot matrix of the face data.

We need to investigate. The first thing to do is look at the distribution of age values.
[Figure BADHIST.]

> hist(data$age)

Figure BADHIST: Initial histogram of face age data.

This doesn't look right. The x-axis has been scaled all the way up to 70 million because of
outliers. Let's look at the records with outlying age values.

Select records with age greater than 100. > data[which(data$age > 100),]

 id num_judgments age male attractive intelligence
40623 150 402.3333 TRUE 2.416667 NA
57021 133 47882.3010 TRUE NA NA
66441 197 66666692.0000 TRUE NA NA

Earlier, we cleaned out the non-numeric age values, but we didn't check for absurdly high
values. The easiest thing to do for now is to just remove these outliers. If you haven't
used a data analysis language before, notice how R's rich subscripting notation makes basic
exploration and cleaning easy and fun.

Subselect rows with age less than 100. > clean_data = data[which(data$age < 100),]

We check the histogram again – Figure GOODHIST – and find out that most of our users are
(or appear to be) between 18 and 30, which seems reasonable.

Figure GOODHIST: Histogram of cleaned face age data.

Age, attractiveness, and gender

We want to zoom in on interactions of some of the most interesting perceived attributes:
age, gender, and attractiveness. Whenever we have a table with a few interesting columns,
it's straightforward and often informative to throw it up as a scatterplot [Figure AAG_SP1].

Draw a scatterplot of age vs. attractiveness, > plot(dage, dattractive,
using gender to define the points’ colors. col = ifelse(d$male, 'blue', 'deeppink'))

Figure AAG_SIMPLE: Scatterplot of attractiveness vs. age, colored by gender.

This plot is suggestive -- for example, women seem to be more attractive than men. But
it's hard to tell anything for sure, since tens of thousands of points are being drawn over
each other. When there is an overload of data, scatterplots can be misleading. One way to
deal with this is to smooth the data, by plotting an estimated distribution rather than the
points themselves. We use a standard technique called kernel density estimation.

Lay out side-by-side plots. > par(mfrow=c(1,2))
For males and females, > dm = d[d$male,]; df = d[d$female,]
draw smoothed plots, > smoothScatter(dfage, dfattractive,
with a color gradient, colramp = colorRampPalette(c("white", "deeppink")),
and aligned axes. ylim=c(0,4))
 > smoothScatter(dmage, dmattractive,
 colramp = colorRampPalette(c("white", "blue")),
 ylim=c(0,4))

Figure SMOOTHCOMPARE: Smoothed scatterplots for attractiveness vs. age, one plot per
gender.

We can even try putting them on the same plot [Figure SMOOTHCOMBINED].

> smoothScatterMult(dage, dattractive, d$male, blendFun=bl_burn, colramps =
c(colorRampPalette(c("white", "red")), colorRampPalette(c("white", "blue")),
colorRampPalette(c("white", "green"))), pch="", nrpoints=10000)

Figure SMOOTHCOMBINED: Smoothed scatterplots for attractiveness vs. age, colored by
gender and overlaid on one plot.

These graphs show the full distribution of the data, but it's hard to see patterns. For
example, how does age affect attractiveness? It's easier to see this by computing summary
statistics and plotting them. [Figure AAG_BUCKETS_SIMPLE.]

For males > dm = d[which(d$male),]
and females, > df = d[which(d$female),]
average across faces > male_avg_by_year = by(dm$attractive,
within bins cut(dm$age, breaks=0:80), mean)
(one per year) > female_avg_by_year = by(df$attractive,
then cut(df$age, breaks=0:80), mean)
plot them > plot(male_avg_by_year, col='blue')
all together. > points(female_avg_by_year, col='deeppink')

This graph starts to tell a story, but it's still a bit hard to read. Some of the points are
averages from thousands of faces, while some of the more elderly points come from just a
handful of observations. Therefore there's more noise on the right since the samples are
smaller.

We'll add two new features to the plot [Figure AAG_BUCKETS_FANCY]. First, we compute
95% confidence intervals to make sure we're not fooling ourselves into seeing patterns from
noise. Confidence intervals are a way to estimate a range of possible means with the
limited data we have. Second, we'll fit a loess curve to help visualize aggregate patterns in
this noisy sequential data. Ordinarily, we might fit a linear regression to the data, but this
data isn’t linear, and doesn’t look like any function we know of. A loess function (“locally
weighted regression”) is a way to fit an arbitrary curve to data. It’s basically a fancy
moving average.

This graph still isn't perfect. There are a number of points around the edges with just one
or two samples where it's impossible to compute confidence intervals. This is not surprising
if you look back at that age histogram in Figure GOODHIST – people appearing over 50
make up only 1.7% of the data set. Furthermore, many intervals are so big that the data

points they represent aren't that meaningful. So for the areas where we have fewer data
points -- the very young and the old -- we use larger, 5- and 10-year buckets. This graph
looks far less noisy [Figure AAG_BUCKETS_VAR].

Women are generally judged as more attractive than men across all ages except babies.
Babies are found to be most attractive, but the attractiveness drops until around age 18
(perhaps users are uncomfortable judging adolescents as "attractive"?) after which it rises
and peaks around age 27. After that, attractiveness drops until around age 50, at which
point it seems to increase again. But it's hard to say for sure, since the data is very sparse
among people perceived to be above 50.

Figure AAG_BUCKETS_ALL: Three iterations of plotting attractiveness vs. age vs. gender.
(SIMPLE) Ages averaged within buckets per age year. (FANCY) 95% confidence interval for
each bucket, plus loess curves. (VAR) Larger buckets where the data is sparser.

Of course, among the twenty or so non-textual attributes, there are many more
relationships to explore. We could make lots more of plots similar to the above; but could
we view all interesting interactions at once? Let's stay with the approach of looking at
pairwise interactions and make a variant of the pairs plot from earlier. Instead of trying to
show a scatterplot in every panel, we instead show a single color indicating the overall
correlation between the attributes. Blue is positive correlation, and red is a negative one.

First compute pairwise correlations, > cors = cor(d, use='pair')
and order the attributes to try to > ord = order.hclust(cors)
put similar attributes next to each other. > cors = cors[ord,ord]
Plot the correlation matrix, > image(cors, col=col.corrgram(7))
with axis labels. > axis(1, at=seq(0,1, length=nrow(cors)),
 labels=row.names(cors))

Figure CORMAT: Pearson correlation matrix.
Attribute pairs with blue squares are positively
correlated; pairs with red squares are anti-
correlated.

Text of questions
• dress_size: What is my dress size?
• security: If you were an airport security guard,

would you search me?
• outfit: Do you like my outfit?
• rehab: Will I end up in rehab?
• haircut: Do you like my hairstyle?
• age: How old am I?
• weight: How much do I weigh?
• political_affiliation: What is my political affiliation?

(Higher is more conservative)
• plastic_surgery: Have I had plastic surgery?
• sexual_orientation: What is my sexual orientation?

(Higher is more gay)
• attractive: How attractive am I?
• wealth: How wealthy am I?
• age_well: Will/Have I age(d) well?
• talented: Am I talented?
• intelligence: How smart am I?
• trustworthy: How trustworthy am I?
• dogfight: Do you think I would win a fight with a

medium sized dog?
• hire: Would you hire me?
intoxicated: How intoxicated am I?

This plot is rich with interesting correlations that could warrant further investigation.

• Women are judged as more intelligent than men.
• Women are judged more likely win a dogfight.
• Dress size is only weakly correlated with weight.
• Women are more likely to be hired as security guards.
• People who look like they have had plastic surgery are less likely to be hired as

security guards.
• Trustworthiness, intelligence, talent, aging well, wealth, and conservativeness all

correlate with each other. An "axis of responsibility"?

Looking at tags

In addition to all this ordinal and numeric data, we have a set of free-form tags that users
were able enter about a person's picture. The tags range from descriptive ("freckles",
"nosering") to crass ("takemetobed", "dirtypits") to friendly ("you.look.good.in.red") to
advice ("cutyourhair", "avoidsun") to editorial ("awwdorable!!!!!", "EnoughUploadsNancy")
to mean ("Thefatfriend") to nonsensical ("...", "plokmnjiuhbygvtfcrdxeszwaq"). In general,
free text data is more complicated to process.

The first thing to do is examine the distribution of the tags. What's the most common tag?
What are the least most common tags?

Load our tags > face_tags = read.delim("face_tags.tsv",sep=”\t”,as.is=T)
then count > counts = table(face_tags$tag)
and rank them. > sorted_counts = sort(counts, decreasing=T)
Show the most common tags. > sorted_counts[1:20]

 cute pretty happy nice fun young
 81333 40954 36263 33221 30622 27900
 sweet friendly cool weird hot gay
 20362 14895 14709 12731 12662 12409
 Cute funny scary sexy old goofy
 12132 11508 11445 11287 10958 10511
 emo shy
 10292 10207

Show the least common tags. > tail(sorted_count, 20)

 überdude übersöt ünsall
 1 1 1
ýour.nose.is.sexymamama!! 我 浅
 1 1 1
 良 ？ ♥haiir!!
 1 1 1
 白人 賢母 ��;
 1 1 1
 шдд オタク ロンリー
 1 1 1
 ешкув сшеет херня
 1 1 1
 ダースベイダー Красивая!
 1 1

Glancing at a few of the tags raises questions about normalization. Should "cute" and
"Cute" be merged into the same tag? Should punctuation be dropped entirely? Should that
funny looking full-width question mark for Asian languages be considered the same as the
standard ASCII question mark? Clearly, it depends on the application. Whenever possible,
our instinct is to err on the side of caution and leave the original data intact. This preserves
information -- for example, the tags "hot" and "HOT!!!" certainly have different semantic

content. It's always easier to carefully merge data when necessary for a specific
visualization or analysis, rather than try to guess ahead of time what all the requirements
are and be forced to undo earlier normalization decisions.

A basic plot of a tag distribution looks at frequency of a tag against its frequency rank.
Typically, when counting words or other lexical items, we see a a quick drop-off from the
most frequent words to less frequent words. In our data, there are 290,000 unique tags
out of 2.4 million total. The top 1,000 unique tags have 1.4 million occurences -- more than
half the total mass of tags. And just among those there's a sharp fall-off. From our table of
common tags, we see that the most common tag, "cute", has 36,000 occurrences, but the
second most common, "pretty", has just half of that. [Figure TAG_HIST.]

For the top 1000 tags, > s = sorted_counts[1:1000]
draw a plot of their counts. > barplot(s)

Figure TAG_HIST: Tag frequencies for top 1000 tags.

In 1935, the linguist George Zipf observed that word frequency distributions often follow a
"power-law", where the frequency of the k-th word is proportional to (1/k^s), where s is a
constant. Unlike a Gaussian distribution, this distribution has infinite variance, which can
make it somewhat unwieldy for certain statistical algorithms. Popular books such as "The
Black Swan" and "The Long Tail" have made these distributions famous as "fat tail" or "long
tail" distributions. Indeed, our data has quite a long tail: 220,000 words, or 76% of the
vocabulary, occur only once.

We can check to see if we have a power-law distribution, by plotting our word frequencies in
log space [Figure ZIPF].

Plot log ranks > log_ranks = log(1:length(sorted_counts))
against log frequency. > plot(log_ranks, log(sorted_counts))

Figure ZIPF: Tags’ log frequencies by log rank, with fitted line from the power law model.

A power law distribution should look linear in the log-log space.

Fit a model of log count against log rank > model = lm(log(sorted_counts) ~ log_ranks)
and draw it on our Figure ZIPF. > abline(model)

We find our tags' frequencies are fairly close to a (1/n0.80) distribution. (If you don't think it
looks like the best fit line, keep in mind that 76% of all the points are on that last bottom-
right ledge of the data.)

If you do this log-log frequency plot on any sort of text -- newspapers, novels, web pages,
etc. -- it looks similar.1 Perhaps unsurprisingly, when FaceStat users write description tags,
they're engaging in a linguistic behavior that has some fundamental similarities to other
types of human communication.

1 George Zipf, 1935, The Psychobiology of Language. See also
http://en.wikipedia.org/wiki/Zipf's_law

How do the tags fit in with the rest of our data? A first pass is to randomly sample from
them and overlay them on plots that we've already generated. [Figure TAG_SCAT.]

Figure TAG_SCAT: Tag sample plotted on attractiveness vs. age smoothed scatterplot.

Here the darkness of the plot shows the density in the overall distribution of Political
Affiliation vs. Attractiveness. Words are randomly sampled from throughout the
distribution. The blue words are tags for males, and the pink words indicate tags for
females. This gives us a sense for whether or not the tags are corresponding to the
variables in the plot. The data looks roughly reasonable: the tag "average" shows up in the
middle of the graph, while someone tagged "topless" in the liberal/attractive quadrant and
someone tagged "dorky" is in the conservative/unattractive quadrant. The graph can be
regenerated multiple times with different random number seeds to look at distributions of
tags throughout the data.

Which words are gendered?

Many social theorists have wondered to what extent gender is reflected in language. Our
dataset lets us explore this at the word level: we can find which description tags are most
characteristic of male or female faces. We could just count the words that occur most often
for men, and the words that occur most often for women, but this mostly just gets words
that are frequent everywhere. A better approach is to score tags by their ratio of

occurrences between genders. That is, to determine how characteristic a tag t is for gender
g, look at:

 no. of occurrences of tag T for a face with gender G
--
 no. of occurrences of tag T overall

This has a flaw: rare tags introduce noise. For example, any tag that appears just once
automatically gets a perfect score of 1 for whichever gender it appeared with. (This is
another example of error due to small sample sizes that we saw for sparse age buckets.) A
simple way around this is to to use a frequency threshold -- we'll only look at tags that
occur more than 100 times.

Calculating these scores -- in statistical terminology, they're maximum likelihood estimates
of the conditional probabilities Pr(G|T) -- we get the following tables.

Words most characteristic of men:

 g t ratio
 daddy 122 122 1.0000000
 fatherly 115 115 1.0000000
 fratboy 177 177 1.0000000
 father 172 173 0.9942197
 dad 341 343 0.9941691
 douche 229 231 0.9913420
 Handsome 110 111 0.9909910
 scruffy 149 151 0.9867550
 bald 343 350 0.9800000
 jock 395 404 0.9777228
 handsome 510 524 0.9732824
 thug 141 145 0.9724138
 tool 255 264 0.9659091
 player 522 542 0.9630996
 Gay 307 319 0.9623824
 jerk 131 137 0.9562044
 gamer 103 108 0.9537037
 fag 148 156 0.9487179
 pimp 121 128 0.9453125

Words most characteristic of women:

 g t ratio
 Bubbly 118 118 1.0000000
 Mom 161 161 1.0000000
 busty 148 148 1.0000000
 milf 267 267 1.0000000
 mom 1088 1088 1.0000000
 motherly 396 396 1.0000000
 partygirl 221 221 1.0000000
 mommy 307 308 0.9967532
 mother 358 360 0.9944444
 ditzy 144 145 0.9931034
 fjortis 113 114 0.9912281
 MILF 103 104 0.9903846

 Pretty 926 935 0.9903743
 cheerleader 159 161 0.9875776
 boobs 153 155 0.9870968
 makeup 143 145 0.9862069
 bitchy 284 288 0.9861111
 cougar 141 143 0.9860140
 slutty 538 546 0.9853480
 slut 509 517 0.9845261

It's perhaps surprising how extremely gendered words such as "handsome", "gamer",
"Bubbly" and "slut" are. They appear with their gender almost ALL of the time.

Clustering

What are the typical types of people in our data? Clustering is a powerful statistical method
to find this sort of pattern. A clustering algorithm splits data points into several
characteristic classes by grouping together similar instances. There are many methods for
clustering. One of the most popular and simple methods is called k-means. In k-means,
each cluster has a center point, a "centroid." Several different centroids are found in the
data and each data point is assigned to a centroid. The algorithm iteratively adjusts the
clusters so that as many data points as possible are close to their assigned centroids.

In our dataset, each face has about 20 numeric attributes. Thus faces are points in a 20-
dimensional space. K-means will place faces into several different clusters within that
space, trying to select clusters where faces are as similar to their cluster's center as
possible.

One unfortunate aspect about k-means clustering is that you have to pick a fixed number of
clusters, "k", up front. There isn't an obvious way to choose the number of clusters. The
best thing to do is to try a few different numbers and see what patterns emerge. Here's
one run of k-means we did that gave reasonable output.

Preprocess the data, > norm_data = apply(d, 2, function(x) {
by changing missing values to the mean, x[is.na(x)] = mean(x, na.rm=TRUE)
and unit-normalizing values, x = (x - mean(x)) / sd(x)
which usually makes k-means work better. x })
Then run k-means for 5 clusters, > clus = kmeans(norm_data, 5)
and plot our standby, attractiveness vs. age, > plot(dage, dattractive,
but color by col = c("red", "purple", "blue", "orange",
cluster assignment, "green",”darkturquoise”)[clus$cluster],
and have fun with unicode. pch = ifelse(d$male, '\u2642', '\u2640'))

Figure KMEANS_AAG: Attractiveness vs. age, colored by cluster, showing a subsample of
2000 points.

Points on the scatterplot are faces, with colors corresponding to the clusters they were
assigned to. We’re showing faces within the attractiveness vs. age space, like our earlier
plots. A few clusters are already interpretable: the orange cluster corresponds to older
people, while purple seems to be attractive young people, and so on.

This plot only shows two or three dimensions of the data, so does not adequately
summarize the clustering algorithm, which compares faces in the full 20-dimensional space.
That’s why some clusters overlap above: for example, red and green seem to have fairly
similar ranges of age and attractiveness. Those clusters must differ by other attributes.

Let's look at individual clusters in several ways. First, we show a cluster's attribute
weights. This is the position of the cluster's centroid point; it can be thought of as the
typical attributes for a face in that cluster. So if you looked at the average points per
cluster in the above graph, that would give you the cluster weightings for age and
attractiveness. (We'll show eight attributes; the rest are insignificant because of too many
missing values.) Second, we show the top ten characteristic tags for faces in that cluster,
ranked by conditional probability like in the gender analysis above.

Figure CLUSTER5.

Purple cluster centroid

Purple cluster tags
c = # of occurrences of the tag in the
purple cluster
t = # of occurrences of the tag overall

 c t ratio
 verycute 226 525 0.430
 striking 204 606 0.336
 Flirty 113 439 0.257
 superficial 106 437 0.242
 cheerleader 202 837 0.241
 prissy 126 561 0.224
 snobby 121 545 0.222
 flirt 170 785 0.216
 exotic 498 2327 0.214
 peppy 123 579 0.212

First off, here's the purple cluster in Figure CLUSTER2. This is a heavily female, highly
attractive cluster. The tags are interesting. They uncannily resemble the attributes -- in
fact, if you cover up the graph on the left, you probably could guess many of the attributes
for the group. The tags paint a coherent and vivid picture -- even though our k-means
algorithm completely ignored this information! This illustrates that tags have intuitive
correlations to social attributes. (Perhaps this is not surprising.)

We've put all the clusters in the table CLUSTER_TABLE, along with the four most
representative faces (meaning, ones closest to the centroid) per cluster.

Figure CLUSTER_TABLE: cluster centroids, tags, and exemplars.

Some of the clusters have straightforward interpretations and some are less clear.

• Purple cluster: young, attractive women.
• Blue cluster: unattractive, unintelligent men. (“Losers”?)
• Green cluster: other, more generic young men. Many of its tags are also highly

likely for the blue cluster.
• Red cluster: other young women.
• Orange cluster: older women.
• Turquoise cluster: older men.

Clustering can be useful to find high dimensional patterns or groups in data which are hard
to visualize in two dimensions. On the other hand, it's hard to validate whether clustering is
telling you anything "real". There are many clustering algorithms and many parameters to
tweak (such as that k) which can give different results. Was this exercise useful? Well, the
clusters seem fairly coherent, and are quite suggestive of a number of patterns. It's
interesting to see vivid sets of tags are associated with each. And k-means might provide
an analogue with how our minds think of people -- from the centroids and tag sets we can
imagine a prototypical person representing each cluster.

Conclusion

Our data indicates people hold some familiar stereotypes. Women are considered more
attractive than men. Age has a stronger attractiveness effect for women than men. The
space of social attributes falls along lines that feel familiar to us: jocks, fathers, attractive
young women. But there are also some potential surprises -- babies are most attractive,
conservatives look more intelligent, etc. We found examples of gendered words.

We're tempted to go on and on with suggestive findings, but the point of this chapter is not
to come to any particular conclusion. Instead, we wanted to show some examples of the
rich set of significant patterns contained in a large, messy dataset of human judgments. A
more rigorous data collection process -- like carefully controlled lab experiments -- would
never produce such a volume of data, but could be useful as follow-up experiments.

Every day we reveal more and more about ourselves through the things we buy, the
websites we use, the queries we search for, the messages we send, and the places we go.
Whether we like it or not, for the first time in human history all this data is being carefully
saved. Setting aside the important privacy concerns, the value to social science is
enormous. Through this mess of repurposed information, we will learn about ourselves in
completely new ways.

Acknowledgments

Many thanks to all the people who gave feedback for early drafts of this chapter: Joanna
Gubman, Sasha Goodman, Jeff Hammerbacher, Mike Love, Will Moffat, and Toby Segaran.
FaceStat owes its existence to the hard and brilliant work of our colleague Chris Van Pelt.

References

We have uploaded a subset of the data, as well as notes and code to help replicated our
analyses, at http://data.doloreslabs.com.

If you're interested in learning R, we recommend two websites.

1. Quick-R: http://statmethods.net. High-level overviews and topic guides. By Robert
Kabacoff.

2. RSeek: http://rseek.org. A search engine for R documentation, packages, and
mailing lists. By Sasha Goodman.

R’s official website is http://www.r-project.org. If you are interested in how it compares to
other data analysis packages, see the many comments on an early draft of Table COMP at
http://anyall.org/blog/?p=421 (especially the amazing SAS war stories!)

Aside from R's core functionality, some of the add-on packages we used include: corrgram,
flowCore, gclus, geneplotter, plyr, and pixmap.

Good overviews of clustering, loess, and other machine learning techniques are in The
Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and Jerome Friedman,
2008.

The section on tags barely touches the surface of statistical language analysis. For more,
see Foundations of Statistical Natural Language Processing by Christopher Manning and
Hinrich Schütze, 1999; and also Speech and Language Processing by Daniel Jurafsky and
James H. Martin, 2008.

There are many better ways for estimating confidence intervals for the attractiveness vs.
age analysis. One method is partial pooling; see pp. 252—258 of Andrew Gelman and
Jennifer Hill’s Data Analysis Using Regression and Multilevel Models, 2006.

What we do in this chapter is called “exploratory data analysis” – as opposed to ploddingly
careful hypothesis testing that is usually taught in statistical methodology courses. EDA
was strongly advocated by statistician John Tukey in his 1977 book of the same name.

Our startup, Dolores Labs, specializes in crowdsourcing: collecting human task data from
large masses of people to solve practical problems in content moderation, information
extraction, web search relevance, and other domains. We collect, look at, and automatically
analyze lots of human judgment data. You can see follow-ups to this chapter, and analyses
of other subjects like sex, colors, and ethics, at our blog: http://blog.doloreslabs.com.

