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Introduction 
 
How do we perceive age, gender, intelligence, and attractiveness?  What insight can we 
extract from millions of anonymous opinions? 
 
Last year we, with Chris Van Pelt, built the website FaceStat.com, where users can upload 
their own photos, as well as look at and judge photos of other people.  The site became 
surprisingly popular.  More than 100,000 brave users have uploaded pictures of themselves, 
friends, relatives, enemies, etc., and more than 10 million judgments have been collected 
for pre-selected questions such as: 
 

• How old do I look?  
• Do you think I look smart?  
• Do you think I could win a fight with a medium sized dog?  
• Describe me in one word.  

 
We like to call it “multivariate Hot-or-Not.” 
 
Researchers in psychology and sociology have extensively studied stereotypes and how our 
appearances influence the way we are perceived.  But no one has had access to such a 
large pool of data from such a diverse group of people.  This data is much messier than a 
typical lab experiment, but can volume make up for a lack of control?  In fact, real-world 
data might be most revealing: someone who thinks they're playing a game could be more 
honest than a college sophomore taking a survey in their Psych 101 course. 
 
We love exploring big datasets.  Rather than confirm pre-baked hypotheses, we’ll search for 
interesting patterns and correlations.  We won't try to hide or gloss over the messy outliers 
and missing values; instead, we'll show you explicitly the choices we're forced to make.  We 
will refrain from drawing grand or controversial conclusions about stereotyping and let the 
data speak for itself. 
 



Figure SCREENSHOT: Screenshot of the FaceStat judging interface. 

 
 
 
Preprocessing the Data 
 
We'll start from the beginning: like many websites, FaceStat runs on an SQL database.  The 
judgment interface takes user judgments and saves them as a set of (face ID, attribute, 
judgment) triples.  The first thing we do is extract those 10 million rows from the database.  
This gives us a file that looks like: 
 
face_id   key          value 
149777    describe     serious 
18717     trustworthy  3 
140467    attractive   2 
149777    describe     five-head 
... 
 
We're interested in exploring the relationships between different types of perceived 
attributes.  One interesting question is, "How old do I look?"  The very first thing to do is to 
look at the responses that people have given.  Unix command-line tools make it easy to 
quickly see a histogram of responses.  The most common responses look like reasonable 
ages, but we also see a problem: 
 
Look at $ cat data.tsv  | 
age judgments'    grep "age"  | 



values    cut -f3  | 
and count how many times    sort  | 
each value occurs,    uniq -c  | 
and order by this count.    sort -nr 
 
Here's the output of this shell pipeline.  For each line, the first number is the frequency 
count.  The second string is the response value -- exactly what the user typed in the web 
form in response to the question How old do I look?  Most often, they typed in a number, 
but there are some issues: 
 
70472 19 
70021 22 
69387 18 
68423 17 
... 
27 24\r\n 
27 17\r\n 
23 01 
21 16\r\n 
... 
1 old enough to know better 
1 hopefully over 21 
1 e 
1 ?? 
... 
 
FaceStat has existed for 8 months and undergone many changes, so data has been 
collected under different circumstances.  Some weird web browsers seem to add whitespace 
control codes \r\n.  At some point there was a bug and users slipped in textual responses 
and other problematic data.  Looking at rare values from the bottom of the sort | uniq -c | 
sort -nr histogram is an easy way to reveal data bugs, since they often manifest as 
outliers.  We have to write some regular expressions that can clean out bad values like this. 
 
It would be tedious to go into detail about all of the sanity checks and data cleanup, but 
they are a crucial first step for any data analysis. With any human-generated data set, 
there’s bound to be messy outliers.  For example, we found one person who figured out a 
way to circumvent the randomness in the selection of which face to judge, and labeled one 
face “mr. cool” hundreds of times. 
 
Besides cleanup, some critical decisions to make for this particular data set are (1) how to 
map from multiple choice responses like “very trustworthy” vs. “not to be trusted” to a 
numerical value, and (2) how to aggregate results from multiple people into a single 
description of a face.  Every face has some 100 judgments among several different 
attributes.  We’ll simply average the numeric judgments.  (Under this paradigm, we ignore 
textual judgments; we'll get to those later.)  So each face has an average perceived age, 
perceived intelligence, etc.  Using SQL and Python scripts, we eventually end up with a file 
with one row per face.  It looks something like: 
 
       male      age intelligence attractive political_affiliation 
       TRUE 24.26667           NA   2.800000                    NA 
       TRUE 47.00000     3.400000   2.120000                   3.2 
       TRUE 29.27273     2.700000   2.083333                   1.8 
      FALSE 17.63636     3.111111   2.428571                    NA 



      FALSE 19.58333           NA   2.750000                    NA 
       TRUE 22.80953           NA   2.250000                    NA 
       TRUE 29.77778     1.833333   1.900000                    NA 
      FALSE 18.16667           NA   2.571429                    NA 
       TRUE 46.60000     3.200000   2.120000                   3.4 
       TRUE 52.06667     3.000000   2.080000                    NA 
 
In all, there are tens of thousands of faces with about 20 different attributes.  There are 
many missing values: different questions were asked of different people.  With those 
caveats in mind, we're ready to load the data into a package for more detailed analysis.  If 
you want to follow along, we’ve made a subset of the data and useful code available at 
http://data.doloreslabs.com. 
 
 
Exploring the Data 
 
There are many great tools for data analysis.  Some of the most commonly used are 
compared in table COMP. 
 
Table COMP: Comparison of Data Analysis Packages 
 

 

Name Advantages Disadvantages Open 
source? 

Typical users 

R Library support; 
visualization Steep learning curve Yes 

Statistics 

Matlab Elegant matrix support; 
visualization 

Expensive; incomplete 
statistics support No 

Engineering 

SciPy/NumPy/
Matplotlib 

Python (general-purpose 
programming language) Less mature Yes 

Engineering 

Excel Easy; visual; flexible Large datasets; weak 
numeric support No 

Business 

SAS Large datasets Very baroque; hardest 
to learn 

No Business 

Stata (and 
SPSS) 

Easy statistical analysis Less programmatic 
than R/Matlab/Py 

No Science  
(bio and social) 

 
We like to use R.  It's an open source statistical and visualization programming environment 
with a vibrant and growing development community.  It’s emerged as a de facto standard 
among statisticians.  For exploratory data analysis, we prefer it to the other options because of 
its graphing libraries, convenient indexing notation, and an amazing array of statistically 
sophisticated, community maintained packages.  You can read about it and download it at 
http://www.r-project.org; also see the references at the end of this chapter. 
 
R provides many of excellent tools for looking at what's in the data.  From its interactive 
interpreter: 
 
Load the data > data = read.delim("http://data.doloreslabs.com/face_scores.tsv", sep="\t")  
and plot. > plot(data) 
 
Given a basic table of records, R's default plotting action is to give us a scatterplot matrix of 



every pair of variables.  [Figure BADSCATS.]  One thing that jumps out is that the age 
correlations look funny -- the right-most column and bottom-most row. 
 
 
Figure BADSCATS: Initial scatterplot matrix of the face data.

We need to investigate.  The first thing to do is look at the distribution of age values.  
[Figure BADHIST.] 
 
> hist(data$age)
 



Figure BADHIST: Initial histogram of face age data. 

 
 
This doesn't look right.  The x-axis has been scaled all the way up to 70 million because of 
outliers.  Let's look at the records with outlying age values. 
 
Select records with age greater than 100. > data[which(data$age > 100),] 
 
   id num_judgments           age male attractive intelligence 
40623           150      402.3333 TRUE   2.416667           NA 
57021           133    47882.3010 TRUE         NA           NA 
66441           197 66666692.0000 TRUE         NA           NA 
 
Earlier, we cleaned out the non-numeric age values, but we didn't check for absurdly high 
values.  The easiest thing to do for now is to just remove these outliers.  If you haven't 
used a data analysis language before, notice how R's rich subscripting notation makes basic 
exploration and cleaning easy and fun. 
 
Subselect rows with age less than 100. > clean_data = data[which(data$age < 100),]  
 
We check the histogram again – Figure GOODHIST – and find out that most of our users are 
(or appear to be) between 18 and 30, which seems reasonable.



Figure GOODHIST: Histogram of cleaned face age data.

 
 
Age, attractiveness, and gender 
 
We want to zoom in on interactions of some of the most interesting perceived attributes: 
age, gender, and attractiveness.  Whenever we have a table with a few interesting columns, 
it's straightforward and often informative to throw it up as a scatterplot [Figure AAG_SP1]. 
 
Draw a scatterplot of age vs. attractiveness, > plot(d$age, d$attractive, 
using gender to define the points’ colors.      col = ifelse(d$male, 'blue', 'deeppink')) 



Figure AAG_SIMPLE: Scatterplot of attractiveness vs. age, colored by gender.

 
This plot is suggestive -- for example, women seem to be more attractive than men.  But 
it's hard to tell anything for sure, since tens of thousands of points are being drawn over 
each other.  When there is an overload of data, scatterplots can be misleading.  One way to 
deal with this is to smooth the data, by plotting an estimated distribution rather than the 
points themselves.  We use a standard technique called kernel density estimation. 
 
Lay out side-by-side plots. > par(mfrow=c(1,2)) 
For males and females, > dm = d[d$male,];  df = d[d$female,] 
draw smoothed plots, > smoothScatter(df$age, df$attractive, 
with a color gradient,     colramp = colorRampPalette(c("white", "deeppink")),  
and aligned axes.             ylim=c(0,4)) 
 > smoothScatter(dm$age, dm$attractive, 
     colramp = colorRampPalette(c("white", "blue")),  
     ylim=c(0,4)) 



Figure SMOOTHCOMPARE: Smoothed scatterplots for attractiveness vs. age, one plot per 
gender.

 
 
We can even try putting them on the same plot [Figure SMOOTHCOMBINED]. 
 
> smoothScatterMult(d$age, d$attractive, d$male, blendFun=bl_burn, colramps = 
c(colorRampPalette(c("white", "red")), colorRampPalette(c("white", "blue")), 
colorRampPalette(c("white", "green"))), pch="", nrpoints=10000)



Figure SMOOTHCOMBINED: Smoothed scatterplots for attractiveness vs. age, colored by 
gender and overlaid on one plot.

 
These graphs show the full distribution of the data, but it's hard to see patterns.  For 
example, how does age affect attractiveness?  It's easier to see this by computing summary 
statistics and plotting them.  [Figure AAG_BUCKETS_SIMPLE.]
 
For males > dm = d[which(d$male),] 
and females, > df = d[which(d$female),] 
average across faces > male_avg_by_year = by(dm$attractive,  
within bins     cut(dm$age, breaks=0:80), mean)  
(one per year) > female_avg_by_year = by(df$attractive,  
then     cut(df$age, breaks=0:80), mean) 
plot them > plot(male_avg_by_year, col='blue') 
all together. > points(female_avg_by_year, col='deeppink')
 
This graph starts to tell a story, but it's still a bit hard to read.  Some of the points are 
averages from thousands of faces, while some of the more elderly points come from just a 
handful of observations.  Therefore there's more noise on the right since the samples are 
smaller. 
 
We'll add two new features to the plot [Figure AAG_BUCKETS_FANCY].  First, we compute 
95% confidence intervals to make sure we're not fooling ourselves into seeing patterns from 
noise.  Confidence intervals are a way to estimate a range of possible means with the 
limited data we have.  Second, we'll fit a loess curve to help visualize aggregate patterns in 
this noisy sequential data.  Ordinarily, we might fit a linear regression to the data, but this 
data isn’t linear, and doesn’t look like any function we know of.  A loess function (“locally 
weighted regression”) is a way to fit an arbitrary curve to data.  It’s basically a fancy 
moving average.
 
This graph still isn't perfect.  There are a number of points around the edges with just one 
or two samples where it's impossible to compute confidence intervals.  This is not surprising 
if you look back at that age histogram in Figure GOODHIST – people appearing over 50 
make up only 1.7% of the data set.  Furthermore, many intervals are so big that the data 



points they represent aren't that meaningful.  So for the areas where we have fewer data 
points -- the very young and the old -- we use larger, 5- and 10-year buckets.  This graph 
looks far less noisy [Figure AAG_BUCKETS_VAR].

Women are generally judged as more attractive than men across all ages except babies.  
Babies are found to be most attractive, but the attractiveness drops until around age 18 
(perhaps users are uncomfortable judging adolescents as "attractive"?) after which it rises 
and peaks around age 27.  After that, attractiveness drops until around age 50, at which 
point it seems to increase again.  But it's hard to say for sure, since the data is very sparse 
among people perceived to be above 50. 
 
 
Figure AAG_BUCKETS_ALL: Three iterations of plotting attractiveness vs. age vs. gender.  
(SIMPLE) Ages averaged within buckets per age year.  (FANCY) 95% confidence interval for 
each bucket, plus loess curves.  (VAR) Larger buckets where the data is sparser. 
 

 
 



 
 
Of course, among the twenty or so non-textual attributes, there are many more 
relationships to explore.  We could make lots more of plots similar to the above; but could 
we view all interesting interactions at once?  Let's stay with the approach of looking at 
pairwise interactions and make a variant of the pairs plot from earlier.  Instead of trying to 
show a scatterplot in every panel, we instead show a single color indicating the overall 
correlation between the attributes.  Blue is positive correlation, and red is a negative one.   
 
First compute pairwise correlations, > cors = cor(d, use='pair') 
and order the attributes to try to > ord = order.hclust(cors) 
put similar attributes next to each other. > cors = cors[ord,ord]  
Plot the correlation matrix, > image(cors, col=col.corrgram(7)) 
with axis labels. > axis(1, at=seq(0,1, length=nrow(cors)),  
           labels=row.names(cors)) 
 
Figure CORMAT: Pearson correlation matrix.  
Attribute pairs with blue squares are positively 
correlated; pairs with red squares are anti-
correlated. 
 

 

Text of questions 
• dress_size: What is my dress size? 
• security: If you were an airport security guard, 

would you search me? 
• outfit: Do you like my outfit? 
• rehab: Will I end up in rehab? 
• haircut: Do you like my hairstyle? 
• age: How old am I? 
• weight: How much do I weigh? 
• political_affiliation: What is my political affiliation?  

(Higher is more conservative) 
• plastic_surgery: Have I had plastic surgery? 
• sexual_orientation: What is my sexual orientation?  

(Higher is more gay) 
• attractive: How attractive am I? 
• wealth: How wealthy am I? 
• age_well: Will/Have I age(d) well? 
• talented: Am I talented? 
• intelligence: How smart am I? 
• trustworthy: How trustworthy am I? 
• dogfight: Do you think I would win a fight with a 

medium sized dog? 
• hire: Would you hire me? 
intoxicated: How intoxicated am I? 

 
 
This plot is rich with interesting correlations that could warrant further investigation. 
 

• Women are judged as more intelligent than men.  
• Women are judged more likely win a dogfight.  
• Dress size is only weakly correlated with weight.  
• Women are more likely to be hired as security guards.  
• People who look like they have had plastic surgery are less likely to be hired as 

security guards.  
• Trustworthiness, intelligence, talent, aging well, wealth, and conservativeness all 

correlate with each other.  An "axis of responsibility"? 



 
 
Looking at tags 
 
In addition to all this ordinal and numeric data, we have a set of free-form tags that users 
were able enter about a person's picture.  The tags range from descriptive ("freckles", 
"nosering") to crass ("takemetobed", "dirtypits") to friendly ("you.look.good.in.red") to 
advice ("cutyourhair", "avoidsun") to editorial ("awwdorable!!!!!", "EnoughUploadsNancy") 
to mean ("Thefatfriend") to nonsensical ("...", "plokmnjiuhbygvtfcrdxeszwaq").  In general, 
free text data is more complicated to process. 
 
The first thing to do is examine the distribution of the tags.  What's the most common tag?  
What are the least most common tags? 
 
Load our tags > face_tags = read.delim("face_tags.tsv",sep=”\t”,as.is=T) 
then count > counts = table(face_tags$tag) 
and rank them. > sorted_counts = sort(counts, decreasing=T) 
Show the most common tags. > sorted_counts[1:20] 
 
    cute   pretty    happy     nice      fun    young 
   81333    40954    36263    33221    30622    27900 
   sweet friendly     cool    weird      hot      gay 
   20362    14895    14709    12731    12662    12409 
    Cute    funny    scary     sexy      old    goofy 
   12132    11508    11445    11287    10958    10511 
     emo      shy 
   10292    10207 
 
 
Show the least common tags. > tail(sorted_count, 20) 
 
                 überdude            übersöt            ünsall 
                        1                  1                 1 
ýour.nose.is.sexymamama!!                  我                浅 
                        1                  1                 1 
                        良                 ？          ♥haiir!! 
                        1                  1                 1 
                       白人               賢母              ��; 
                        1                  1                 1 
                      шдд                オタク          ロンリー 
                        1                  1                 1 
                    ешкув              сшеет             херня  
                        1                  1                 1 
             ダースベイダー          Красивая! 
                        1                  1 
 
 
 
Glancing at a few of the tags raises questions about normalization.  Should "cute" and 
"Cute" be merged into the same tag?  Should punctuation be dropped entirely?  Should that 
funny looking full-width question mark for Asian languages be considered the same as the 
standard ASCII question mark?  Clearly, it depends on the application.  Whenever possible, 
our instinct is to err on the side of caution and leave the original data intact.  This preserves 
information -- for example, the tags "hot" and "HOT!!!" certainly have different semantic 



content.  It's always easier to carefully merge data when necessary for a specific 
visualization or analysis, rather than try to guess ahead of time what all the requirements 
are and be forced to undo earlier normalization decisions. 
 
A basic plot of a tag distribution looks at frequency of a tag against its frequency rank.  
Typically, when counting words or other lexical items, we see a a quick drop-off from the 
most frequent words to less frequent words.  In our data, there are 290,000 unique tags 
out of 2.4 million total.  The top 1,000 unique tags have 1.4 million occurences -- more than 
half the total mass of tags.  And just among those there's a sharp fall-off.  From our table of 
common tags, we see that the most common tag, "cute", has 36,000 occurrences, but the 
second most common, "pretty", has just half of that.  [Figure TAG_HIST.] 
 
For the top 1000 tags,  > s = sorted_counts[1:1000] 
draw a plot of their counts. > barplot(s)
 
 
Figure TAG_HIST: Tag frequencies for top 1000 tags.

 
 
In 1935, the linguist George Zipf observed that word frequency distributions often follow a 
"power-law", where the frequency of the k-th word is proportional to (1/k^s), where s is a 
constant.  Unlike a Gaussian distribution, this distribution has infinite variance, which can 
make it somewhat unwieldy for certain statistical algorithms.  Popular books such as "The 
Black Swan" and "The Long Tail" have made these distributions famous as "fat tail" or "long 
tail" distributions.  Indeed, our data has quite a long tail: 220,000 words, or 76% of the 
vocabulary, occur only once. 
 
We can check to see if we have a power-law distribution, by plotting our word frequencies in 
log space [Figure ZIPF]. 
 



Plot log ranks > log_ranks = log(1:length(sorted_counts)) 
against log frequency. > plot(log_ranks, log(sorted_counts))
 
 
Figure ZIPF: Tags’ log frequencies by log rank, with fitted line from the power law model. 

 
A power law distribution should look linear in the log-log space. 
 
Fit a model of log count against log rank > model = lm(log(sorted_counts) ~ log_ranks) 
and draw it on our Figure ZIPF. > abline(model) 
 
We find our tags' frequencies are fairly close to a (1/n0.80) distribution.  (If you don't think it 
looks like the best fit line, keep in mind that 76% of all the points are on that last bottom-
right ledge of the data.) 
 
If you do this log-log frequency plot on any sort of text -- newspapers, novels, web pages, 
etc. -- it looks similar.1  Perhaps unsurprisingly, when FaceStat users write description tags, 
they're engaging in a linguistic behavior that has some fundamental similarities to other 
types of human communication. 
 

                                            
1 George Zipf, 1935, The Psychobiology of Language.  See also 
http://en.wikipedia.org/wiki/Zipf's_law 



How do the tags fit in with the rest of our data?  A first pass is to randomly sample from 
them and overlay them on plots that we've already generated.  [Figure TAG_SCAT.] 
 
 
Figure TAG_SCAT: Tag sample plotted on attractiveness vs. age smoothed scatterplot.

 
 
Here the darkness of the plot shows the density in the overall distribution of Political 
Affiliation vs. Attractiveness.  Words are randomly sampled from throughout the 
distribution.  The blue words are tags for males, and the pink words indicate tags for 
females.  This gives us a sense for whether or not the tags are corresponding to the 
variables in the plot.  The data looks roughly reasonable: the tag "average" shows up in the 
middle of the graph, while someone tagged "topless" in the liberal/attractive quadrant and 
someone tagged "dorky" is in the conservative/unattractive quadrant.  The graph can be 
regenerated multiple times with different random number seeds to look at distributions of 
tags throughout the data. 
 
 
Which words are gendered? 
 
Many social theorists have wondered to what extent gender is reflected in language.  Our 
dataset lets us explore this at the word level: we can find which description tags are most 
characteristic of male or female faces.  We could just count the words that occur most often 
for men, and the words that occur most often for women, but this mostly just gets words 
that are frequent everywhere.  A better approach is to score tags by their ratio of 



occurrences between genders.  That is, to determine how characteristic a tag t is for gender 
g, look at: 
 

 no. of occurrences of tag T for a face with gender G 
---------------------------------------------------------- 
 no. of occurrences of tag T overall

 
This has a flaw: rare tags introduce noise.  For example, any tag that appears just once 
automatically gets a perfect score of 1 for whichever gender it appeared with.  (This is 
another example of error due to small sample sizes that we saw for sparse age buckets.)  A 
simple way around this is to to use a frequency threshold -- we'll only look at tags that 
occur more than 100 times. 
 
Calculating these scores -- in statistical terminology, they're maximum likelihood estimates 
of the conditional probabilities Pr(G|T) -- we get the following tables. 
 
Words most characteristic of men: 
 
                  g      t     ratio 
       daddy    122    122 1.0000000 
    fatherly    115    115 1.0000000 
     fratboy    177    177 1.0000000 
      father    172    173 0.9942197 
         dad    341    343 0.9941691 
      douche    229    231 0.9913420 
    Handsome    110    111 0.9909910 
     scruffy    149    151 0.9867550 
        bald    343    350 0.9800000 
        jock    395    404 0.9777228 
    handsome    510    524 0.9732824 
        thug    141    145 0.9724138 
        tool    255    264 0.9659091 
      player    522    542 0.9630996 
         Gay    307    319 0.9623824 
        jerk    131    137 0.9562044 
       gamer    103    108 0.9537037 
         fag    148    156 0.9487179 
        pimp    121    128 0.9453125 
 
 
Words most characteristic of women: 
 
                  g      t     ratio 
      Bubbly    118    118 1.0000000 
         Mom    161    161 1.0000000 
       busty    148    148 1.0000000 
        milf    267    267 1.0000000 
         mom   1088   1088 1.0000000 
    motherly    396    396 1.0000000 
   partygirl    221    221 1.0000000 
       mommy    307    308 0.9967532 
      mother    358    360 0.9944444 
       ditzy    144    145 0.9931034 
     fjortis    113    114 0.9912281 
        MILF    103    104 0.9903846 



      Pretty    926    935 0.9903743 
 cheerleader    159    161 0.9875776 
       boobs    153    155 0.9870968 
      makeup    143    145 0.9862069 
      bitchy    284    288 0.9861111 
      cougar    141    143 0.9860140 
      slutty    538    546 0.9853480 
        slut    509    517 0.9845261 
 
It's perhaps surprising how extremely gendered words such as "handsome", "gamer", 
"Bubbly" and "slut" are.  They appear with their gender almost ALL of the time. 
 
 
Clustering 
 
What are the typical types of people in our data?  Clustering is a powerful statistical method 
to find this sort of pattern.  A clustering algorithm splits data points into several 
characteristic classes by grouping together similar instances.  There are many methods for 
clustering.  One of the most popular and simple methods is called k-means.  In k-means, 
each cluster has a center point, a "centroid."  Several different centroids are found in the 
data and each data point is assigned to a centroid.  The algorithm iteratively adjusts the 
clusters so that as many data points as possible are close to their assigned centroids. 
 
In our dataset, each face has about 20 numeric attributes.  Thus faces are points in a 20-
dimensional space.  K-means will place faces into several different clusters within that 
space, trying to select clusters where faces are as similar to their cluster's center as 
possible. 
 
One unfortunate aspect about k-means clustering is that you have to pick a fixed number of 
clusters, "k", up front.  There isn't an obvious way to choose the number of clusters.  The 
best thing to do is to try a few different numbers and see what patterns emerge.  Here's 
one run of k-means we did that gave reasonable output. 
 
Preprocess the data, > norm_data = apply(d, 2, function(x) { 
by changing missing values to the mean,     x[is.na(x)] = mean(x, na.rm=TRUE) 
and unit-normalizing values,     x = (x - mean(x)) / sd(x) 
which usually makes k-means work better.     x }) 
Then run k-means for 5 clusters, > clus = kmeans(norm_data, 5) 
and plot our standby, attractiveness vs. age, > plot(d$age, d$attractive,  
but color by     col = c("red", "purple", "blue", "orange", 
cluster assignment,        "green",”darkturquoise”)[clus$cluster], 
and have fun with unicode.     pch = ifelse(d$male, '\u2642', '\u2640'))



Figure KMEANS_AAG: Attractiveness vs. age, colored by cluster, showing a subsample of 
2000 points.

 
Points on the scatterplot are faces, with colors corresponding to the clusters they were 
assigned to.  We’re showing faces within the attractiveness vs. age space, like our earlier 
plots.  A few clusters are already interpretable: the orange cluster corresponds to older 
people, while purple seems to be attractive young people, and so on. 
 
This plot only shows two or three dimensions of the data, so does not adequately 
summarize the clustering algorithm, which compares faces in the full 20-dimensional space.  
That’s why some clusters overlap above: for example, red and green seem to have fairly 
similar ranges of age and attractiveness.  Those clusters must differ by other attributes. 
 
Let's look at individual clusters in several ways.  First, we show a cluster's attribute 
weights.  This is the position of the cluster's centroid point; it can be thought of as the 
typical attributes for a face in that cluster.  So if you looked at the average points per 
cluster in the above graph, that would give you the cluster weightings for age and 
attractiveness.  (We'll show eight attributes; the rest are insignificant because of too many 
missing values.)  Second, we show the top ten characteristic tags for faces in that cluster, 
ranked by conditional probability like in the gender analysis above. 
 



Figure CLUSTER5. 
 

Purple cluster centroid 

 
 

Purple cluster tags 
c = # of occurrences of the tag in the 
purple cluster 
t = # of occurrences of the tag overall 
 
                     c      t   ratio 
       verycute    226    525   0.430 
       striking    204    606   0.336 
         Flirty    113    439   0.257 
    superficial    106    437   0.242 
    cheerleader    202    837   0.241 
         prissy    126    561   0.224 
         snobby    121    545   0.222 
          flirt    170    785   0.216 
         exotic    498   2327   0.214 
          peppy    123    579   0.212 
 

 
First off, here's the purple cluster in Figure CLUSTER2.  This is a heavily female, highly 
attractive cluster.  The tags are interesting.  They uncannily resemble the attributes -- in 
fact, if you cover up the graph on the left, you probably could guess many of the attributes 
for the group.  The tags paint a coherent and vivid picture -- even though our k-means 
algorithm completely ignored this information!  This illustrates that tags have intuitive 
correlations to social attributes.  (Perhaps this is not surprising.) 
 
We've put all the clusters in the table CLUSTER_TABLE, along with the four most 
representative faces (meaning, ones closest to the centroid) per cluster.



Figure CLUSTER_TABLE: cluster centroids, tags, and exemplars. 

 
 
 



Some of the clusters have straightforward interpretations and some are less clear. 
 

• Purple cluster: young, attractive women. 
• Blue cluster: unattractive, unintelligent men.  (“Losers”?) 
• Green cluster: other, more generic young men.  Many of its tags are also highly 

likely for the blue cluster. 
• Red cluster: other young women. 
• Orange cluster: older women. 
• Turquoise cluster: older men. 

 
Clustering can be useful to find high dimensional patterns or groups in data which are hard 
to visualize in two dimensions.  On the other hand, it's hard to validate whether clustering is 
telling you anything "real".  There are many clustering algorithms and many parameters to 
tweak (such as that k) which can give different results.  Was this exercise useful?  Well, the 
clusters seem fairly coherent, and are quite suggestive of a number of patterns.  It's 
interesting to see vivid sets of tags are associated with each.  And k-means might provide 
an analogue with how our minds think of people -- from the centroids and tag sets we can 
imagine a prototypical person representing each cluster.   
 
 
Conclusion 
 
Our data indicates people hold some familiar stereotypes.  Women are considered more 
attractive than men.  Age has a stronger attractiveness effect for women than men.  The 
space of social attributes falls along lines that feel familiar to us: jocks, fathers, attractive 
young women.  But there are also some potential surprises -- babies are most attractive, 
conservatives look more intelligent, etc.  We found examples of gendered words. 
 
We're tempted to go on and on with suggestive findings, but the point of this chapter is not 
to come to any particular conclusion.  Instead, we wanted to show some examples of the 
rich set of significant patterns contained in a large, messy dataset of human judgments.  A 
more rigorous data collection process -- like carefully controlled lab experiments -- would 
never produce such a volume of data, but could be useful as follow-up experiments. 
 
Every day we reveal more and more about ourselves through the things we buy, the 
websites we use, the queries we search for, the messages we send, and the places we go.  
Whether we like it or not, for the first time in human history all this data is being carefully 
saved.  Setting aside the important privacy concerns, the value to social science is 
enormous.  Through this mess of repurposed information, we will learn about ourselves in 
completely new ways. 
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other data analysis packages, see the many comments on an early draft of Table COMP at 
http://anyall.org/blog/?p=421 (especially the amazing SAS war stories!) 
 
Aside from R's core functionality, some of the add-on packages we used include: corrgram, 
flowCore, gclus, geneplotter, plyr, and pixmap. 
 
Good overviews of clustering, loess, and other machine  learning techniques are in The 
Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and Jerome Friedman, 
2008.  
 
The section on tags barely touches the surface of statistical language analysis.  For more, 
see Foundations of Statistical Natural Language Processing by Christopher Manning and 
Hinrich Schütze, 1999; and also Speech and Language Processing by Daniel Jurafsky and 
James H. Martin, 2008. 
 
There are many better ways for estimating confidence intervals for the attractiveness vs. 
age analysis.  One method is partial pooling; see pp. 252—258 of Andrew Gelman and 
Jennifer Hill’s Data Analysis Using Regression and Multilevel Models, 2006. 
 
What we do in this chapter is called “exploratory data analysis” – as opposed to ploddingly 
careful hypothesis testing that is usually taught in statistical methodology courses.  EDA 
was strongly advocated by statistician John Tukey in his 1977 book of the same name. 
 
Our startup, Dolores Labs, specializes in crowdsourcing: collecting human task data from 
large masses of people to solve practical problems in content moderation, information 
extraction, web search relevance, and other domains.  We collect, look at, and automatically 
analyze lots of human judgment data.  You can see follow-ups to this chapter, and analyses 
of other subjects like sex, colors, and ethics, at our blog: http://blog.doloreslabs.com. 
 


