Brendan O’Connor and Michael Bieniosek

Linguistics 138; December 6, 2002

Prof. Martin Kay

Final Project: Random Sentence Generation with n-grams

We developed a random sentence generator that trained itself on a corpus of natural written language, and then could generate sentences based upon that corpus. It worked by doing statistical analysis of trigrams or n-gram tuples of sequential words.

When it generated words, it would pick the next word in the sentence by choosing a word that in the corpus often came after the previous n – 1 words.

This was initially implemented by using a Python tuple of the first n - 1 words as a key in a global dictionary whose value was a probability table of all the words which had followed those sequences in the corpus and their respective frequencies.

Imagine we were to parse the following sentence into triples (for purpose of this example, suppose the sentence appears entirely in lowercase):

the brown dog jumps over the brown fox

In the original tuple-keyed implementation, each initial word pair would be used as a key pointing to all possible succeeding words. The key is simply a Python tuple of strings.

(*, *) -> the=1

(*, the) brown=1

(the, brown) dog=.5, fox=.5

(brown, dog) jumps=1

(dog, jumps) over=1

(jumps, over) the=1

(over, the) brown=1

(brown, fox) .=1

However, this approach was more useful when n was small. A different implementation was used in order to generalize the algorithm for n-grams of n > 3. A tree of initial n - 1 words was used to point to the frequency tables in the data structure. Thus, the representation of the training corpus consisted of a dictionary of possible initial words for each sequence, with each word pointing to a list of possible following words, and so on until reaching the frequency table at the n –1th word.

In the tree implementation, instead of using tuples for keys, the first 2 words are made into a tree of possible word sequences. This tree contains every double in the text, which points to a list of all words which follow the double (in this example some initial words have been omitted).

*

the

brown

(etc.)

|------------|

|

|-----------|

*

the

brown

dog fox

|

|

|

|

|

(the=1)
(brown=1)
(dog=.5

(jumps=1)
(.=1)

 fox=.5)

This makes it easier to implement random sentence generation for n-grams of arbitrary length. It also permits analysis of the tree structure, since a procedure could simply walk through the tree and gather statistics. We did a version of this for sparseness analysis; see below.

FINDINGS

1) Surprising effectiveness

We discovered that the random sentences had remarkably grammatical syntax, considering the manner in which they were generated. For example, one sentence generated by digrams was

"""We have been nebulous as it ran towards the Istiqlal's "privileged position" until it was speaking, metaphorical, but have model ~R Dietetic Laboratories, which might do everything he was loud in frankfurter in the prelude to be."""

While this sentence has no real semantic meaning, its syntax is perfect. Subject-verb agreement in naturally produced language usually does not seem to require more than two words of context: the verb and the word immediately preceding it, i.e., the noun. This suggests that English does not have very many syntactical long-distance dependencies and can be used by speakers who only remember the last few words they have spoken. Sentences that do have long distance dependencies for subject-verb agreement, such as "The man that they saw when buying the pastries was walking to the bus stop", seem to be somewhat uncommon. The generator did seem to have some problems with putting one verb in each sentence, though it tended to produce sentences without verbs more often than sentences with multiple verbs. One would expect that many noun phrases can appear both as a subject or as an object in different sentences, so the generator merely forgot where it was and tried to make the noun phrase do both.

It is not clear how other languages would behave in this method of sentence generator. French would probably do only slightly worse. Like English, French verbs can only be separated from their subject by a small number of words. Gender might also be based mostly on close-distance dependencies and so would not pose too much trouble to the generator. A language which required case agreement with its verb might have more trouble forming correct syntax, especially when the verb is not immediately preceding or following that noun phrase. A language like Latin would probably not work so well simply because it would be confused by different cases of words.

2) Sparseness

Using the Brown corpus as a training text, the generator did well up to 3 and 4 grams. However, sparse data became a problem after that, with most 5-gram sentences taken directly from the training text. The problem was, there were not enough common n – 1 tuples shared between multiple sentences, so when the generator was walking through the tree, it had only one choice at each probability table.

We extended the corpus analyzer to include metadata where each word came from, and save it within its probability table. We were then able to analyze generated sentences for which sentences each n-gram came from, and where the combinations between different sentences took place. Here’s sample formatted output:

--

He has served in the Kremlin this morning to be honest and morally proper.

? b

He : n/a

has : n/a

served : n/a

in : continuous..

the : Continuity break over the n-1-gram: ['served', 'in']

Kremlin : Continuity break over the n-1-gram: ['in', 'the']

this : Continuity break over the n-1-gram: ['the', 'Kremlin']

morning : continuous..

to : continuous..

be : continuous..

honest : Continuity break over the n-1-gram: ['to', 'be']

and : continuous..

morally : continuous..

proper. : continuous..

The n-1-grams above are the shared words that bridge together different sentences from the corpus:

1) He

 <omitted>

2) served

 A02 1680 of education at Fort Hays, Kan&, State College. He has served
 B07 1660 He has served in positions of greater glamour, both at home and abroad;

3) in

 B07 1660 He has served in positions of greater glamour, both at home and abroad;

4) the

 A08 0100 1945, Pfaff served in the Army Air Corps. While in the service

5) Kremlin

 A07 1340 _MOSCOW, JUNE 18_- At a gay party in the Kremlin for President

 B20 0920 with Lenin to less distinguished quarters in the Kremlin wall is not

6) this

 Premier Khrushchev expected the millions looking toward the Kremlin
 B07 1110 this morning to be filled with admiration or rage- depending

7) morning

 Premier Khrushchev expected the millions looking toward the Kremlin
 B07 1110 this morning to be filled with admiration or rage- depending

8) to

 B07 1110 this morning to be filled with admiration or rage- depending

9) be

 B07 1110 this morning to be filled with admiration or rage- depending

10) honest

 B02 1050 ills. Both men are known to be honest and public-spirited. Mayor

11) and

 B02 1050 ills. Both men are known to be honest and public-spirited. Mayor

 C16 1520 and be honest and morally proper. All in all, Montgomery calls for a

12) morally

 C16 1520 and be honest and morally proper. All in all, Montgomery calls for a

13) proper.

 C16 1520 and be honest and morally proper. All in all, Montgomery calls for a

This is where the randomness of the semantics comes in. In sentence B07 1660, “he” refers to someone serving in a military service. From A08, the trigram is plucked out of a sentence about a certain person in the Army Air Corps. But the object of the preposition gets completely changed with the A07 & B20 sentences: “in the Kremlin”. The sentence jumps from the U.S. military to the Soviet political elite over the n-1-gram “in the”. What’s important is that the grammatical integrity is preserved because the structure is fundamentally infix. “served in the Kremlin” (verb prep article noun) pivots over the grammatically significant “in the”. In English, the prep-article structure is infix with respect to the verb its modifying, and the noun within its prepositional phrase. This is why we speculate the generator would fail on languages without similar the infix-significant constructions, such as German where many verbs end up being postfix-significant: “Er hat in dem Kremlin gearbeitet” would be impossible to construct with n-gram methods. (And never mind the conjugation or case changes!)

We also ran statistical analysis on sparseness. Much to our non-surprise, we found that with bigger n-grams and smaller corpuses, sentences tended to have higher continuity – that is, tended to come all from the same original sentence.

[All sentences here coming from the same corpus:]

	n
	2
	3
	4
	5

	Average words per sentence
	20.3
	22.6
	28.8
	28.8

	Average continuity breaks per sentence
	13.3
	7.8
	2.8
	0.7

	Percentage of sentences that have no continuity breaks (are straight copied from the corpus)
	.2%
	7%
	30%
	76%

Further possibilities include running n-gram analysis on other languages, through different and bigger corpuses, and using it on a tagged corpus, with or without some sort of tag-significant word choice algorithm, in order to analyze the sentence structures it creates. With more time, n-gram analysis can reveal facts about language.

Source Code
conf.py

#This must be import'able python code.

#Each must be a list of filenames to read in.

import glob

icame = glob.glob(

 "/afs/ir/data/linguistic-data/Brown/ICAME-Brown1/brown1_[a].txt")

tagged = glob.glob(

 "/afs/ir/data/linguistic-data/Brown/Treebank3-Tagged-Brown/c[q-r]/*")

small = ["smallbrown"]

import inputclasses

FILENAMES = icame

INPUTCLASS = inputclasses.ICAMEInput

#FILENAMES = tagged

#INPUTCLASS = inputclasses.TreebankTaggedInput

inputclasses.py

from __future__ import generators

import re,string

class Metadata(object):

 def __init__(self, pos, tag):

 self.pos = pos

 self.tag = tag

EMPTY_METADATA = Metadata(('A00 0000', 42,42), None)

class ICAMEInput(object):

 """Looks like:

 A01 0010 The Fulton County Grand Jury said Friday an investigation

 A01 0020 of Atlanta's recent primary election produced "no evidence" that

 A01 0030 any irregularities took place. The jury further said in term-end

 """

 def __init__(self, infile):

 self.infile = infile

 def __iter__(self):

 wordcount = 0

 for line in self.infile:

 posstr = " ".join(line.split()[:2])

 toks = line.split()[2:]

 for horizpos, tok in zip(range(len(toks)), toks):

 wordcount += 1

 yield tok, Metadata((posstr, horizpos, wordcount), None)

 if len(tok)>0 and tok[-1] == ".": #assume end of sentence

 #Then begin a new sentence:

 yield '#', EMPTY_METADATA

rsg.py

from __future__ import generators

class Node:

 """Represents a bunch of possible next-words for one word-as-a-node

 Doesn't include the word itself; rather, it's associated with the word

 in a key:value relationship elsewhere

 These only live as leafs at the bottom of the tree

 """

 def __init__(self):

 self.n = 0

 self.dict = {} #word : freq

 self.list = None

 self.metadata_dt = {} #word : metadatas

 def add_child(self, child, metadata):

 self.n += 1

 if self.dict.has_key(child):

 self.dict[child] += 1

 self.metadata_dt[child].append(metadata)

 else:

 self.dict[child] = 1

 self.metadata_dt[child] = [metadata]

 def finalize(self):

 self.list = []

 counter = 0

 for word, freq in self.dict.iteritems():

 counter += freq

 self.list.append((counter, word))

 def get_word(self, rand):

 n = rand * self.n

 if not self.list:

 self.finalize()

 item_bottom = 0

 item_top = len(self.list) - 1

 while item_top > item_bottom + 1:

 item_middle = (item_top + item_bottom) / 2

 if n < self.list[item_middle][0]:

 item_top = item_middle

 elif n > self.list[item_middle][0]:

 item_bottom = item_middle

 else:

 return self.list[item_middle][1]

 return self.list[item_top][1]

SENTENCE_DELIM= '#'

def build_dict(n, token_source, n_tuple_dict = None):

 """Will build upon the n_tuple_dict tree, and return a new, updated tree"""

 if not n_tuple_dict: n_tuple_dict = {}

 starting_ngram = [SENTENCE_DELIM for i in xrange(n)]

 count=0

 cur_ngram = starting_ngram

 for tok, metadata in token_source:

 count += 1

 cur_ngram = cur_ngram[1:] + [tok]

 curnode = n_tuple_dict

 for i in xrange(n - 1): #Populate the n-1-length path with {}'s and a Node

 if not curnode.has_key(cur_ngram[i]):

 if i == n - 2:

 curnode[cur_ngram[i]] = Node()

 else:

 curnode[cur_ngram[i]] = {}

 curnode = curnode[cur_ngram[i]]

 #curnode is now actually a node, not a dict

 curnode.add_child(cur_ngram[n - 1], metadata)

 if tok == SENTENCE_DELIM:

 cur_ngram = starting_ngram[:]

 return n_tuple_dict, count

def get_choosing_node(dict, sequence):

 """Traverses a sequence of words, length=n, down the tree. It returns

 the bottom node, which is a Node node, that contains a probability table."""

 working = dict

 for i in xrange(len(sequence)):

 if working.has_key(sequence[i]):

 working = working[sequence[i]]

 else:

 raise Exception, "word " + sequence[i] + " in sequence can't be found"

 return working

import random

import time

random.seed(time.clock())

MAXWORDS=2056

def random_sentence(dict, n):

 """yields word, positionlist. Uses the dict as the big tree, and n as

 the length of the n-gram"""

 startwith = [SENTENCE_DELIM for i in xrange(n-1)]

 newword = 'guten Tag'

 wordcount = 0

 while newword != SENTENCE_DELIM:

 endnode = get_choosing_node(dict, startwith)

 newword = endnode.get_word(random.random())

 if newword is SENTENCE_DELIM:

 yield ".", [('A00 0000', 0, 0)]

 else:

 poslist = [metadata.pos for metadata in endnode.metadata_dt[newword]]

 yield newword, poslist

 startwith = startwith[1:] + [newword]

 wordcount += 1

 if wordcount > MAXWORDS:

 yield ".", [('A00 0000', 0, 0)]

 break

main.py

#!/usr/local/bin/python -i

"""Usage

-n num n-gram length (default 3)

"""

from cmd_line import command_line

import sys

import os

import rsg

import conf

import inputclasses

import pprint

def num_cbreaks(sent):

 """Counts the number of continuity breaks in the given sentence.

 sent: list of (word, its position list)

 """

 breaks = 0

 for i in range(length, len(sent)):

 end_of_prev_ngram = sent[i-1]

 word,posls = end_of_prev_ngram

 prev_absolute_wordpositions = [pos[2] for pos in posls]

 end_of_ngram = sent[i]

 word, posls = end_of_ngram

 cur_absolute_wordpositions = [pos[2] for pos in posls]

 for cur_absolute_wordpos in cur_absolute_wordpositions:

 if cur_absolute_wordpos - 1 in prev_absolute_wordpositions:

 break #No continuity break!

 else:

 breaks += 1

 #print "%-25s: Continuity break -----" %word

 return breaks

def do_stats(num_sents, benchmarkincr=.05, status=1):

 """Generates a lot of sentences, and displays statistical info

 num_sents: number of sentences to run the analysis on

 benchmarkincr: for progress indicator

 status: boolean, whether or not to show the progress indicator

 """

 global length

 total_breaks = 0

 total_words = 0

 total_nobreaks = 0

 lastbenchmark = 0.0

 for i in xrange(num_sents):

 if status:

 if 1.0 * i / num_sents > lastbenchmark + benchmarkincr:

 print "%d%% done, %d sentences analyzed" %(100.0 * i / num_sents, i)

 lastbenchmark += benchmarkincr

 sent = list(rsg.random_sentence(data, length))[:-1]

 num_breaks = num_cbreaks(sent)

 if num_breaks == 0: total_nobreaks += 1

 total_breaks += num_breaks

 total_words += len(sent)

 avg_words_per_sent = total_words * 1.0 / num_sents

 avg_breaks_per_sent = total_breaks * 1.0 / num_sents

 breaks_per_word = total_breaks * 1.0 / total_words

 perc_total_nobreaks = total_nobreaks *1.0 / num_sents

 print "------------------- Results -----------------------"

 allvars = locals(); allvars.update(globals())

 print """

length=%(length)s

num_sents=%(num_sents)s

perc_total_nobreaks=%(perc_total_nobreaks)s #Straight-copied sentences; indicator of sparseness

avg_words_per_sent=%(avg_words_per_sent)s

avg_breaks_per_sent=%(avg_breaks_per_sent)s

breaks_per_word=%(breaks_per_word)s

""" % allvars

def show(linetag):

 """hard-coded to work with the ICAME-Brown1 corpus on the leland systems"""

 fgrepable_linetags = linetag

 s = os.popen("fgrep --no-filename -C 10 '%s' /afs/ir/data/linguistic-data/Brown/ICAME-Brown1/*" %fgrepable_linetags).read().replace('\n', ' \n')

 s = s.replace(linetag, '\001%s\033[31m%s\033[0m\002' %(ANSIBOLD,linetag))

 return s

def clines(linetags):

 """hard-coded to work with the ICAME-Brown1 corpus on the leland systems"""

 fgrepable_linetags = '\n'.join(linetags)

 return os.popen("fgrep --no-filename '%s' /afs/ir/data/linguistic-data/Brown/ICAME-Brown1/*" %fgrepable_linetags).read().replace('\n', ' \n')

--------------------- Begin "main" area -----------------------------

flags = command_line('h', __doc__, [], ['n'])

flags.read()

strlen = flags.switch('n')

if strlen: length = int(strlen)

else: length = 3

Read-in

data = {}

wordcount = 0

for i in conf.FILENAMES:

 print "Processing file", i

 infile = open(i)

 gen = conf.INPUTCLASS(infile)

 data, wordsread = rsg.build_dict(length, gen, data)

 wordcount += wordsread

print "%s total words processed" %wordcount

ANSIBOLD=os.popen("tput bold").read()

print "h for help. Control-D to exit"

while 1:

 opt = raw_input("? ")

 if opt=='h':

 print """

[Enter]=new sentence;

s=show sentence;

a=all positions;

c=context positions;

b=continuity analysis"""

 elif opt=='s':

 print ' '.join([itm[0] for itm in sent])

 elif opt=='a':

 pprint.pprint(sent)

 elif opt=='c':

 for i, (w, posls) in zip(range(len(sent)), sent):

 print "%s) %s "%(i,w)

 linetags = [pos[0] for pos in posls]

 ctxtlines = clines(linetags)

 s = ctxtlines

 s = '\t' + s.strip().replace('\n','\n\t') + '\n'

 s = s.replace(" %s " %w, '\001%s\033[31m %s \033[0m\002' %(ANSIBOLD,w))

 print s,

 print

 elif opt=='b':

 words = [w for w,posls in sent]

 breaks = 0

 for i in range(0,length):

 end_of_ngram = sent[i]

 word, posls = end_of_ngram

 print "%-25s: n/a" %word

 for i in range(length, len(sent)):

 end_of_prev_ngram = sent[i-1]

 word,posls = end_of_prev_ngram

 prev_absolute_wordpositions = [pos[2] for pos in posls]

 end_of_ngram = sent[i]

 word, posls = end_of_ngram

 cur_absolute_wordpositions = [pos[2] for pos in posls]

 for cur_absolute_wordpos in cur_absolute_wordpositions:

 if cur_absolute_wordpos - 1 in prev_absolute_wordpositions:

 print "%-25s: continuous.." %word

 break #No continuity break!

 else:

 print "%-25s: Continuity break over the n-1-gram: %s " \

 %(word, words[i-(length-1):i])

 elif opt=='':

 print '-'*60

 sent = list(rsg.random_sentence(data, length))[:-1]

 print ' '.join([itm[0] for itm in sent])

 else:

 #read-eval-print loop by default

 print eval(opt)
